Basics of SALMON

Masashi Noda

Institute for Molecular Science

What is SALMON?

Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience

- A software to calculate electron dynamics and optical responses
- Real-time and real-space

SALA

• Treatment of light-matter interaction

• Dielectric functions and polarizability

Overview of SALMON

SALMON TUTORIAL, TSUKUBA, 2017

http://salmon-tddft.jp/

Characteristics of SALMON

Real-time electron dynamics •

Non-linear optical response •

6 o_z⁽³⁾(t) (au) 0 -6 10 15 20 5 0 Time t (fs)

SALA

Massive parallelization •

Couple with Maxwell equation

Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience http://salmon-tddft.jp/

SALMON TUTORIAL, TSUKUBA, 2017

Development environment

• Web page: http://salmon-tddft.jp

	Main page	Discussion		Read	View source	View history	Search salmon	Q	
SALMON	Mai	in Page							
About SALMON download Documents Samples References Development User Information Events Navigation Main page Recent changes Random page Help	SALMC function release • Abo • Dow • Doc • Sam • Refe	 SALMON (Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience) is an open-source software based on first-principles time-dependent density functional theory to describe optical responses and electron dynamics in matters induced by light electromagnetic fields. At present, SALMON is under a trial release. We plan to release an official version by the end of October, 2017. About SALMON Download Documents Samples References 							
	• Use • Eve	r Information							
Tools What links here Related changes Special pages Printable version Permanent link Page information	This page Privacy po	was last modified on 16 Oc Ilicy About salmon Discl	:tober 2017, at 08:46. aimers					[Revenued By MedicaWikk	

• License: Apache 2.0

SALM

• Mailing list: salmon-users@salmon-tddft.jp (contact address for inquiry)

Developers

- Isabella Floss (TU Wien, Austria)
- Yuta Hirokawa (University of Tsukuba, Japan)
- Kenji lida (Institute for Molecular Science, Japan)
- Kazuya Ishimura (Institute for Molecular Science, Japan)
- Kyung-Min Lee (Max Planck Institute for the Structure and Dynamics of Matter, Germany)
- Katsuyuki Nobusada (Institute for Molecular Science, Japan)
- Masashi Noda (Institute for Molecular Science, Japan)
- Tomohito Otobe (National Institutes for Quantum and Radiological Science and Technology, Japan)
- Shunsuke Sato (Max Planck Institute for the Structure and Dynamics of Matter, Germany)
- Yasushi Shinohara (University of Tokyo, Japan)
- Takashi Takeuchi (Institute for Molecular Science, Japan)
- Xiao-Min Tong (University of Tsukuba, Japan)
- Mitsuharu Uemoto (University of Tsukuba, Japan)
- Kazuhiro Yabana (University of Tsukuba, Japan)
- Atsushi Yamada (University of Tsukuba, Japan)
- Shunsuke Yamada (University of Tsukuba, Japan)
- Maiku Yamaguchi (University of Tokyo, Japan)

SAL/

(Alphabetic order)

Time-dependent Kohn-Sham equations

• isolated system (length gauge)

$$i\hbar \frac{\partial}{\partial t} \psi_n(\mathbf{r}, t) = \left\{ -\frac{1}{2} \nabla^2 + V_{ext}(\mathbf{r}, t) + V_{ion} + V_H + V_{xc} \right\} \psi_n(\mathbf{r}, t)$$

$$\psi_n: \text{Kohn-Sham orbital} \qquad \qquad V_H: \text{Hartree potential}$$

 $V_{ext}(\mathbf{r}, t)$: External scalar potential V_{xc} : Exchange-correlation potential V_{ion} : Electron-nuclear interaction potential

• periodic system (velocity gauge)

$$i\hbar\frac{\partial}{\partial t}u_{nk}(\boldsymbol{r},t) = \left\{\frac{1}{2}\left(-i\hbar\nabla + \hbar\boldsymbol{k} + \frac{e}{c}\boldsymbol{A}(t)\right)^2 + V_{ion} + V_H + V_{xc}\right\}u_{nk}(\boldsymbol{r},t)$$

 u_{nk} : Bloch orbital

SALA

 \boldsymbol{k} : wave vector $\boldsymbol{A}(t)$: External vector potential

Physical quantities are expressed on grid.

Flowchart of SALMON

GS (Ground State) calculation (determination of initial states)

RT (Real-time) calculation (propagation of states)

"GS-RT" (only for periodic systems)

GS calculation

SALA

• Isolated system (length gauge)

$$\left\{-\frac{1}{2}\nabla^2 + V_{ion} + V_H + V_{xc}\right\}\psi_n(\mathbf{r}) = \epsilon_n\psi_n(\mathbf{r})$$

 ϵ_n : 1-particle energy

• periodic system (velocity gauge)

$$\left\{\frac{1}{2}(-i\hbar\nabla + \hbar\mathbf{k})^2 + V_{ion} + V_H + V_{xc}\right\}u_{n\mathbf{k}}(\mathbf{r}) = \epsilon_{n\mathbf{k}}u_{n\mathbf{k}}(\mathbf{r})$$

Pseudopotential

• Norm-conserving pseudopotential (Kleiman and Bylander separable form)

 $V_{ion} = V_{local} + \sum_{lm} \frac{|\psi_{lm}^{PS} v_l \rangle \langle v_l \psi_{lm}^{PS}|}{\langle \psi_{lm}^{PS} | v_l | \psi_{lm}^{PS} \rangle}$

 V_{local} : local part of pseudopotential v_l : non-local part of pseudopotential ψ_{lm}^{PS} : pseudowavefunction

- pseudopotential files treated by SALMON
- Yabana-Bertsch format
- .pspnc (ABINIT format:

SALA

https://www.abinit.org/sites/default/files/PrevAtomicData/psp-links/psp-links/lda_tm)

.cpi and .fhi (fhi98PP format:

https://www.abinit.org/sites/default/files/PrevAtomicData/psp-links/psp-links/lda_fhi)

Exchange-correlation functions

- Adiabatic approximation
- Exchange-correlation potential

$$V_{xc}(\mathbf{r}) = \epsilon_{xc}([n], \mathbf{r}) + n(\mathbf{r}) \frac{\delta \epsilon_{xc}([n], \mathbf{r})}{\delta n(\mathbf{r})}$$

 ϵ_{xc} : energy per electron n: electron density

• Exchange-Correlation functions

SALM

	Isolated systems	Periodic systems
LDA-PZ (Perdew-Zunger LDA)	\checkmark	\checkmark
LSDA-PZ (Perdew-Zunger LSDA)	\checkmark	
PAM (Perdew-Zunger LDA with modification)		\checkmark
TBmBJ (Tran-Blaha meta-GGA exchange with Perdew-Wang correlation)		\checkmark

Parallelization (1)

- isolated systems
 Kohn-Sham orbital: $\psi_n(r)$
- ➢ MPI: orbital and domain

➢ OpenMP: domain

SALM

- periodic systems Bloch orbital: $u_{nk}(r)$
 - ➤ MPI: orbital and k points

OpenMP: orbital and k points

This parallelization is done automatically.

Scalable Ab-initio Light-Matter simulator for Optics and Nanosciencehttp://salmon-tddft.jp/SALMON TUTORIAL, TSUKUBA, 2017

Parallelization (2)

multiscale calculation

SALM

➤ MPI: macroscopic grids orbital and k points (u_{nk}(r)) in microscopic cell

OpenMP: orbital and k points (u_{nk}(r)) in microscopic cell

This parallelization is done automatically.

Performance (1)

SALM

System	CPU performance
Ag ₅₄ @Si ₄₅₄	12.1% (1,944 processes)
Ag ₁₄₆ @Si ₃₄₅	9.2% (4,000 processes)

Calculations for product runs end in 1.4 hours.

Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience http://salmon-tddft.jp/ SALMON TUTORIAL, TSUKUBA, 2017

Performance (2)

SALM

Used computer: K computer (RIKEN)

Number of processes	CPU performance
7,800	11.0%
15,600	9.3%

Calculations for product runs end in 7 hours with 15,600 processes.

Performance (3)

Laser Excitation Silicon Nanosphere

~ 24,000 [Node Hours] for Computation

SALM

Computation

- World-class many-core supercomputer "Oakforest-PACS" (OFP)
 - Processer:
 - Intel Xeon Phi 7250
 (68 cores 1.4GHz base clock)
 - Number of Nodes:
 - 8208 nodes (use up to 8192)
 - Theoretical Peak Performance
 - 25 PFLOPS