Exercises ==================== Getting started --------------- Welcome to SALMON Exercises! In these exercises, we explain the use of SALMON from the very beginning, taking a few samples that cover applications of SALMON in several directions. We assume that you are in the computational environment of UNIX/Linux OS. First you need to download and install SALMON in your computational environment. If you have not yet done it, do it following the instruction, `download `_ and :any:`install-and-run`. As described in :any:`install-and-run`, you are required to prepare at least an input file and pseudopotential files to run SALMON. In the following, we present input files for several sample calculations and provide a brief explanation of the namelist variables that appear in the input files. You may modify the input files to execute for your own calculations. Pseudopotential files of elements that appear in the samples are also attached. We also present explanations of main output files. We present 6 exercises. First 3 exercises (Exercise-1 ~ 3) are for an isolated molecule, acetylene C2H2. If you are interested in learning electron dynamics calculations in isolated systems, please look into these exercises. In SALMON, we usually calculate the ground state solution first. This is illustrated in :any:`Exercise-1 `. After finishing the ground state calculation, two exercises of electron dynamics calculations are prepared. :any:`Exercise-2 ` illustrates the calculation of linear optical responses in real time, obtaining polarizability and photoabsorption of the molecule. :any:`Exercise-3 ` illustrates the calculation of electron dynamics in the molecule under a pulsed electric field. Next 2 exercises (Exercise-4 ~ 5) are for a crystalline solid, silicon. If you are interested in learning electron dynamics calculations in extended periodic systems, please look into these exercises. Since ground state calculations of small unit-cell systems are not computationally expensive and a time evolution calculation is usually much more time-consuming than the ground state calculation, we recommend to run the ground and the time evolution calculations as a single job. The following two exercises are organized in that way. :any:`Exercise-4 ` illustrates the calculation of linear response properties of crystalline silicon to obtain the dielectric function. :any:`Exercise-5 ` illustrates the calculation of electron dynamics in the crystalline silicon induced by a pulsed electric field. The final exercise (Exercise-6) is for an irradiation and a propagation of a pulsed light in a bulk silicon, coupling Maxwell equations for the electromagnetic fields of the pulsed light and the electron dynamics in the unit cells. This calculation is quite time-consuming and is recommended to execute using massively parallel supercomputers. :any:`Exercise-6 ` illustrates the calculation of a pulsed, linearly polarized light irradiating normally on a surface of a bulk silicon. C2H2 (isolated molecules) ------------------------- .. _exercise-1: Exercise-1: Ground state of C2H2 molecule ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In this exercise, we learn the calculation of the ground state solution of acetylene (C2H2) molecule, solving the static Kohn-Sham equation. This exercise will be useful to learn how to set up calculations in SALMON for any isolated systems such as molecules and nanoparticles. It should be noted that at present it is not possible to carry out the geometry optimization in SALMON. Therefore, atomic positions of the molecule are specified in the input file and are fixed during the calculations. Input files ^^^^^^^^^^^ To run the code, following files are used: +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *C2H2_gs.inp* | input file that contains namelist | | | variables and their values | +-----------------------------------+-----------------------------------+ | *C_rps.dat* | pseodupotential file for carbon | | | atom | +-----------------------------------+-----------------------------------+ | *H_rps.dat* | pseudopotential file for hydrogen | | | atom | +-----------------------------------+-----------------------------------+ | You may download the above 3 files (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/C2H2_gs_input.zip | (zipped input and pseudopotential files) In the input file *C2H2_gs.inp*, namelists variables are specified. Most of them are mandatory to execute the ground state calculation. This will help you to prepare an input file for other systems that you want to calculate. A complete list of the namelist variables that can be used in the input file can be found in the downloaded file *SALMON/manual/input_variables.md*. :: &units unit_system='A_eV_fs' / &calculation calc_mode = 'GS' / &control sysname = 'C2H2' / &system iperiodic = 0 al = 16d0, 16d0, 16d0 nstate = 5 nelem = 2 natom = 4 nelec = 10 / &pseudo izatom(1)=6 izatom(2)=1 pseudo_file(1)='C_rps.dat' pseudo_file(2)='H_rps.dat' lmax_ps(1)=1 lmax_ps(2)=0 lloc_ps(1)=1 lloc_ps(2)=0 / &rgrid dl = 0.25d0, 0.25d0, 0.25d0 / &scf ncg = 4 nscf = 1000 convergence = 'norm_rho_dng' threshold_norm_rho = 1.d-15 / &analysis out_psi = 'y' out_dos = 'y' out_pdos = 'y' out_dns = 'y' out_elf = 'y' / &atomic_coor 'C' 0.000000 0.000000 0.599672 1 'H' 0.000000 0.000000 1.662257 2 'C' 0.000000 0.000000 -0.599672 1 'H' 0.000000 0.000000 -1.662257 2 / We present their explanations below: **Required and recommened variables** **&units** Mandatory: none :: &units unit_system='A_eV_fs' / This namelist specifies the unit system to be used in the input file. If you do not specify it, atomic unit will be used. See :any:`&units in Inputs <&units>` for detail. For isolated systems (specified by ``iperiodic = 0`` in ``&system``), the unit of 1/eV is used for the output files of DOS and PDOS if ``unit_system = 'A_eV_fs'`` is specified, while atomic unit is used if not. For other output files, the Angstrom/eV/fs units are used irrespective of the namelist value. **&calculation** Mandatory: calc_mode :: &calculation calc_mode = 'GS' / This indicates that the ground state (GS) calculation is carried out in the present job. See :any:`&calculation in Inputs <&calculation>` for detail. **&control** Mandatory: none :: &control sysname = 'C2H2' / 'C2H2' defined by ``sysname = 'C2H2'`` will be used in the filenames of output files. .. _exercise-1-&system: **&system** Mandatory: iperiodic, al, nstate, nelem, natom :: &system iperiodic = 0 al = 16d0, 16d0, 16d0 nstate = 5 nelem = 2 natom = 4 nelec = 10 / ``iperiodic = 0`` indicates that the isolated boundary condition will be used in the calculation. ``al = 16d0, 16d0, 16d0`` specifies the lengths of three sides of the rectangular parallelepiped where the grid points are prepared. ``nstate = 8`` indicates the number of Kohn-Sham orbitals to be solved. ``nelec = 10`` indicate the number of valence electrons in the system. Since the present code assumes that the system is spin saturated, ``nstate`` should be equal to or larger than ``nelec/2``. ``nelem = 2`` and ``natom = 4`` indicate the number of elements and the number of atoms in the system, respectively. See :any:`&system in Inputs <&system>` for more information. .. _exercise-1-&pseudo: **&pseudo** Mandatory: pseudo_file, izatom :: &pseudo izatom(1)=6 izatom(2)=1 pseudo_file(1)='C_rps.dat' pseudo_file(2)='H_rps.dat' lmax_ps(1)=1 lmax_ps(2)=0 lloc_ps(1)=1 lloc_ps(2)=0 / Parameters related to atomic species and pseudopotentials. ``izatom(1) = 6`` specifies the atomic number of the element #1. ``pseudo_file(1) = 'C_rps.dat'`` indicates the filename of the pseudopotential of element #1. ``lmax_ps(1) = 1`` and ``lloc_ps(1) = 1`` specify the maximum angular momentum of the pseudopotential projector and the angular momentum of the pseudopotential that will be treated as local, respectively. **&rgrid** Mandatory: dl or num_rgrid :: &rgrid dl = 0.25d0, 0.25d0, 0.25d0 / ``dl = 0.25d0, 0.25d0, 0.25d0`` specifies the grid spacings in three Cartesian directions. See :any:`&rgrid in Inputs <&rgrid>` for more information. **&scf** Mandatory: nscf :: &scf ncg = 4 nscf = 1000 convergence = 'norm_rho_dng' threshold_norm_rho = 1.d-15 / ``ncg`` is the number of CG iterations in solving the Khon-Sham equation. ``nscf`` is the number of scf iterations. For isolated systems specified by ``&system/iperiodic = 0``, the scf loop in the ground state calculation ends before the number of the scf iterations reaches ``nscf``, if a convergence criterion is satisfied. There are several options for the convergence check. If the value of ``norm_rho_dng`` is specified, the convergence is examined by the squared difference of the electron density, **&analysis** The following namelists specify whether the output files are created or not after the calculation. :: &analysis out_psi = 'y' out_dos = 'y' out_pdos = 'y' out_dns = 'y' out_elf = 'y' / **&atomic_coor** Mandatory: atomic_coor or atomic_red_coor (it may be provided as a separate file) :: &atomic_coor 'C' 0.000000 0.000000 0.599672 1 'H' 0.000000 0.000000 1.662257 2 'C' 0.000000 0.000000 -0.599672 1 'H' 0.000000 0.000000 -1.662257 2 / Cartesian coordinates of atoms. The first column indicates the element. Next three columns specify Cartesian coordinates of the atoms. The number in the last column labels the element. Output files ^^^^^^^^^^^^ After the calculation, following output files are created in the directory that you run the code, +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *C2H2_info.data* | information on ground state | | | solution | +-----------------------------------+-----------------------------------+ | *dns.cube* | a cube file for electron density | +-----------------------------------+-----------------------------------+ | *elf.cube* | electron localization function | | | (ELF) | +-----------------------------------+-----------------------------------+ | *psi1.cube*, *psi2.cube*, ... | electron orbitals | +-----------------------------------+-----------------------------------+ | *dos.data* | density of states | +-----------------------------------+-----------------------------------+ | *pdos1.data*, *pdos2.data*, ... | projected density of states | +-----------------------------------+-----------------------------------+ | *C2H2_gs.bin* | binary output file to be used in | | | the real-time calculation | +-----------------------------------+-----------------------------------+ | You may download the above files (zipped file, except for the binary file *C2H2_gs.bin*) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/C2H2_gs_output.zip | (zipped output files) Main results of the calculation such as orbital energies are included in *C2H2_info.data*. Explanations of the *C2H2_info.data* and other output files are below: **C2H2_info.data** Calculated orbital and total energies as well as parameters specified in the input file are shown in this file. :: Total number of iteration = 49 Number of states = 5 Number of electrons = 5 Total energy (eV) = -339.7041368688747 1-particle energies (eV) 1 -18.4492 2 -13.9884 3 -12.3935 4 -7.3310 5 -7.3310 Size of the box (A) = 15.99999363 15.99999363 15.99999363 Grid spacing (A) = 0.24999990 0.24999990 0.24999990 Number of atoms = 4 iZatom( 1) = 6 iZatom( 2) = 1 Ref. and max angular momentum and pseudo-core radius of PP (A) ( 1) Ref, Max, Rps = 1 1 0.800 ( 2) Ref, Max, Rps = 0 0 0.800 **dns.cube** A cube file for electron density. For isolated systems (specified by ``iperiodic = 0`` in ``&system``), atomic unit is adopted in all cube files. **elf.cube** A cube file for electron localization function (ELF). **psi1.cube, psi2.cube, ...** Cube files for electron orbitals. The number in the filename indicates the index of the orbital.. **dos.data** A file for density of states. The units used in this file are affected by the input parameter, ``unit_energy`` in ``&unit``. :: # Density of States # Energy[eV] DOS[1/eV] #----------------------- -21.22853 0.00000000 -21.20073 0.00000000 -21.17294 0.00000000 -21.14514 0.00000000 -21.11735 0.00000000 ... -7.38656 13.67306519 -7.35876 15.35302960 -7.33097 15.95769122 -7.30317 15.35301925 -7.27538 13.67304675 ... -4.66264 0.00000000 -4.63484 0.00000000 -4.60705 0.00000000 -4.57925 0.00000000 -4.55146 0.00000000 **pdos1.data, pdos2.data, ...** Files for projected density of states. The units used in this file are affected by the input parameter, ``unit_energy`` in ``&unit``. The number in the filename indicates the order of atoms specified in ``&atomic_coor``. :: # Projected Density of States # Energy[eV] PDOS(l=0)[1/eV] PDOS(l=1)[1/eV] #----------------------- -21.22853 0.00000000 0.00000000 -21.20073 0.00000000 0.00000000 -21.17294 0.00000000 0.00000000 -21.14514 0.00000000 0.00000000 -21.11735 0.00000000 0.00000000 ... -7.38656 0.00000000 18.33035096 -7.35876 0.00000000 20.58254071 -7.33097 0.00000000 21.39316068 -7.30317 0.00000000 20.58252684 -7.27538 0.00000000 18.33032625 ... -4.66264 0.00000000 0.00000000 -4.63484 0.00000000 0.00000000 -4.60705 0.00000000 0.00000000 -4.57925 0.00000000 0.00000000 -4.55146 0.00000000 0.00000000 We show several image that are created from the output files. * **Highest occupied molecular orbital (HOMO)** The output files *psi1.cube*, *psi2.cube*, ... are used to create the image. .. image:: images/exercise1/HOMO.png :scale: 20% * **Electron density** The output files *dns.cube*, ... are used to create the image. .. image:: images/exercise1/Dns.png :scale: 20% * **Electron localization function** The output files *elf.cube*, ... are used to create the image. .. image:: images/exercise1/Elf.png :scale: 20% .. _exercise-2: Exercise-2: Polarizability and photoabsorption of C2H2 molecule ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In this exercise, we learn the linear response calculation in the acetylene (C2H2) molecule, solving the time-dependent Kohn-Sham equation. The linear response calculation provides the polarizability and the oscillator strength distribution of the molecule. This exercise should be carried out after finishing the ground state calculation that was explained in :any:`Exercise-1 `. In the calculation, an impulsive perturbation is applied to all electrons in the C2H2 molecule along the molecular axis which we take *z* axis. Then a time evolution calculation is carried out without any external fields. During the calculation, the electric dipole moment is monitored. After the time evolution calculation, a time-frequency Fourier transformation is carried out for the electric dipole moment to obtain the frequency-dependent polarizability. The imaginary part of the frequency-dependent polarizability is proportional to the oscillator strength distribution and the photoabsorption cross section. .. _input-files-1: Input files ^^^^^^^^^^^ To run the code, the input file *C2H2_rt_response.inp* that contains namelist variables and their values for the linear response calculation is required. The binary file *C2H2_gs.bin* that is created in the ground state calculation and pseudopotential files are also required. The pseudopotential files should be the same as those used in the ground state calculation. +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *C2H2_rt_response.inp* | input file that contains namelist | | | variables and their values | +-----------------------------------+-----------------------------------+ | *C_rps.dat* | pseodupotential file for carbon | +-----------------------------------+-----------------------------------+ | *H_rps.dat* | pseudopotential file for hydrogen | +-----------------------------------+-----------------------------------+ | *C2H2_gs.bin* | binary file created in the ground | | | state calculation | +-----------------------------------+-----------------------------------+ | You may download the *C2H2_rt_response.inp* file (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/C2H2_rt_response_input.zip | (zipped input file) In the input file *C2H2_rt_response.inp*, namelists variables are specified. Most of them are mandatory to execute the linear response calculation. This will help you to prepare the input file for other systems that you want to calculate. A complete list of the namelist variables that can be used in the input file can be found in the downloaded file *SALMON/manual/input_variables.md*. :: &units unit_system='A_eV_fs' / &calculation calc_mode='RT' / &control sysname = 'C2H2' / &system iperiodic = 0 al = 16d0, 16d0, 16d0 nstate = 5 nelem = 2 natom = 4 nelec = 10 / &pseudo izatom(1)=6 izatom(2)=1 pseudo_file(1)='C_rps.dat' pseudo_file(2)='H_rps.dat' lmax_ps(1)=1 lmax_ps(2)=0 lloc_ps(1)=1 lloc_ps(2)=0 / &tgrid dt=1.25d-3 nt=5000 / &emfield ae_shape1 = 'impulse' epdir_re1 = 0.d0,0.d0,1.d0 / &atomic_coor 'C' 0.000000 0.000000 0.599672 1 'H' 0.000000 0.000000 1.662257 2 'C' 0.000000 0.000000 -0.599672 1 'H' 0.000000 0.000000 -1.662257 2 / We present their explanations below: **Required and recommended variables** **&units** Mandatory: none :: &units unit_system='A_eV_fs' / This namelist specifies the unit system to be used in the input file. If you do not specify it, atomic unit will be used. See :any:`&units in Inputs <&units>` for detail. **&calculation** Mandatory: calc_mode :: &calculation calc_mode = 'RT' / This indicates that the real time (RT) calculation is carried out in the present job. See :any:`&calculation in Inputs <&calculation>` for detail. **&control** Mandatory: none :: &control sysname = 'C2H2' / 'C2H2' defined by ``sysname = 'C2H2'`` will be used in the filenames of output files. **&system** Mandatory: iperiodic, al, nstate, nelem, natom :: &system iperiodic = 0 al = 16d0, 16d0, 16d0 nstate = 5 nelem = 2 natom = 4 nelec = 10 / These namelists and their values should be the same as those used in the ground state calculation. See :any:`&system in Exercise-1 `. **&pseudo** Mandatory: pseudo_file, izatom :: &pseudo izatom(1)=6 izatom(2)=1 pseudo_file(1)='C_rps.dat' pseudo_file(2)='H_rps.dat' lmax_ps(1)=1 lmax_ps(2)=0 lloc_ps(1)=1 lloc_ps(2)=0 / These namelists and their values should be the same as those used in the ground state calculation. See :any:`&pseudo in Exercise-1 `. **&tgrid** Mandatory: dt, Nt :: &tgrid dt=1.25d-3 nt=5000 / ``dt=1.25d-3`` specifies the time step of the time evolution calculation. ``nt=5000`` specifies the number of time steps in the calculation. **&emfield** Mandatory: ae_shape1 :: &emfield ae_shape1 = 'impulse' epdir_re1 = 0.d0,0.d0,1.d0 / ``ae_shape1 = 'impulse'`` indicates that a weak impulse is applied to all electrons at *t=0* ``epdir_re1(3)`` specify a unit vector that indicates the direction of the impulse. See :any:`&emfield in Inputs <&emfield>` for details. **&atomic_coor** Mandatory: atomic_coor or atomic_red_coor (it may be provided as a separate file) :: &atomic_coor 'C' 0.000000 0.000000 0.599672 1 'H' 0.000000 0.000000 1.662257 2 'C' 0.000000 0.000000 -0.599672 1 'H' 0.000000 0.000000 -1.662257 2 / Cartesian coordinates of atoms. The first column indicates the element. Next three columns specify Cartesian coordinates of the atoms. The number in the last column labels the element. They must be the same as those in the ground state calculation. .. _output-files-1: Output files ^^^^^^^^^^^^ After the calculation, following output files are created in the directory that you run the code, +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *C2H2_lr.data* | polarizability and oscillator | | | strength distribution as | | | functions of energy | +-----------------------------------+-----------------------------------+ | *C2H2_p.data* | components of dipole moment as | | | functions of time | +-----------------------------------+-----------------------------------+ | You may download the above files (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/C2H2_rt_response_output.zip | (zipped output files) Explanations of the output files are below: **C2H2-p.data** For time steps from 1 to nt, - 1 column: time - 2-4 columns: x,y,z components of the dipole moment - 5 column: total energy of the system :: # time[fs], dipoleMoment(x,y,z)[A], Energy[eV] 0.12500E-02 0.20197641E-09 0.12143673E-09 0.27407578E-02 -0.33969042E+03 0.25000E-02 -0.23127543E-09 -0.38283389E-09 0.54651286E-02 -0.33969040E+03 0.37500E-02 -0.24342401E-08 -0.25180060E-08 0.81587485E-02 -0.33969039E+03 0.50000E-02 -0.63429482E-08 -0.62611945E-08 0.10810857E-01 -0.33969038E+03 0.62500E-02 -0.11655064E-07 -0.11294666E-07 0.13413805E-01 -0.33969038E+03 ... 0.62450E+01 -0.21648194E-05 -0.12589717E-05 -0.15217299E-02 -0.33969011E+03 0.62463E+01 -0.22246530E-05 -0.12919132E-05 -0.14111473E-02 -0.33969011E+03 0.62475E+01 -0.22836011E-05 -0.13244333E-05 -0.12951690E-02 -0.33969011E+03 0.62488E+01 -0.23416512E-05 -0.13565206E-05 -0.11738782E-02 -0.33969011E+03 0.62500E+01 -0.23987916E-05 -0.13881638E-05 -0.10473800E-02 -0.33969011E+03 **C2H2_lr.data** For energy steps from 0 to nenergy, - 1 column: energy - 2-4 columns: x,y,z components of real part of the polarizability (time-frequency Fourier transformation of the dipole moment) - 5-7 columns: x,y,z components of imaginary part of the polarizability (time-frequency Fourier transformation of the dipole moment) - 8-10 columns: x,y,z components of power spectrum of the dipole moment :: # energy[eV], Re[alpha](x,y,z)[A**3], Im[alpha](x,y,z)[A**3], S(x,y,z)[1/eV] 0.00000E+00 0.90041681E-02 0.42900323E-02 0.47230167E+01 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.10000E-01 0.89986618E-02 0.42874031E-02 0.47230192E+01 0.25932415E-03 0.12379226E-03 0.18663776E-03 0.15045807E-07 0.71823406E-08 0.10828593E-07 0.20000E-01 0.89821593E-02 0.42795232E-02 0.47230267E+01 0.51808569E-03 0.24731589E-03 0.37320742E-03 0.60117942E-07 0.28698192E-07 0.43306470E-07 0.30000E-01 0.89547084E-02 0.42664157E-02 0.47230393E+01 0.77572398E-03 0.37030322E-03 0.55964230E-03 0.13502090E-06 0.64454205E-07 0.97410171E-07 0.40000E-01 0.89163894E-02 0.42481186E-02 0.47230569E+01 0.10316824E-02 0.49248844E-03 0.74587862E-03 0.23942997E-06 0.11429535E-06 0.17310143E-06 0.50000E-01 0.88673137E-02 0.42246853E-02 0.47230796E+01 0.12854100E-02 0.61360857E-03 0.93185683E-03 0.37289297E-06 0.17800571E-06 0.27032843E-06 ... 0.99601E+01 0.15674984E-03 0.37403402E-04 -0.44437601E+00 -0.10631864E-03 -0.14544171E-03 0.27060202E+01 -0.61438595E-05 -0.84046729E-05 0.15637340E+00 0.99701E+01 0.15448331E-03 0.37400902E-04 -0.14920113E+00 -0.10649714E-03 -0.14698080E-03 0.25947889E+01 -0.61603535E-05 -0.85021406E-05 0.15009620E+00 0.99801E+01 0.15224601E-03 0.37478652E-04 0.14911900E+00 -0.10665066E-03 -0.14847068E-03 0.24965858E+01 -0.61754213E-05 -0.85969375E-05 0.14456047E+00 0.99901E+01 0.15003254E-03 0.37632621E-04 0.45012407E+00 -0.10678183E-03 -0.14990965E-03 0.24115316E+01 -0.61892122E-05 -0.86889561E-05 0.13977547E+00 0.10000E+02 0.14783807E-03 0.37858911E-04 0.75334591E+00 -0.10689373E-03 -0.15129625E-03 0.23397373E+01 -0.62019000E-05 -0.87781030E-05 0.13574993E+00 .. _exercise-3: Exercise-3: Electron dynamics in C2H2 molecule under a pulsed electric field ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In this exercise, we learn the calculation of the electron dynamics in the acetylene (C2H2) molecule under a pulsed electric field, solving the time-dependent Kohn-Sham equation. As outputs of the calculation, such quantities as the total energy and the electric dipole moment of the system as functions of time are calculated. This tutorial should be carried out after finishing the ground state calculation that was explained in :any:`Exercise-1 `. In the calculation, a pulsed electric field that has cos^2 envelope shape is applied. The parameters that characterize the pulsed field such as magnitude, frequency, polarization direction, and carrier envelope phase are specified in the input file. .. _input-files-2: Input files ^^^^^^^^^^^ To run the code, following files are used. The *C2H2_gs.bin* file is created in the ground state calculation. Pseudopotential files are already used in the ground state calculation. Therefore, *C2H2_rt_pulse.inp* that specifies namelist variables and their values for the pulsed electric field calculation is the only file that the users need to prepare. +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *C2H2_rt_pulse.inp* | input file that contain namelist | | | variables and their values. | +-----------------------------------+-----------------------------------+ | *C_rps.dat* | pseodupotential file for Carbon | +-----------------------------------+-----------------------------------+ | *H_rps.dat* | pseudopotential file for Hydrogen | +-----------------------------------+-----------------------------------+ | *C2H2_gs.bin* | binary file created in the ground | | | state calculation | +-----------------------------------+-----------------------------------+ | You may download the *C2H2_rt_pulse.inp* file (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/C2H2_rt_pulse_input.zip In the input file *C2H2_rt_pulse.inp*, namelists variables are specified. Most of them are mandatory to execute the calculation of electron dynamics induced by a pulsed electric field. This will help you to prepare the input file for other systems and other pulsed electric fields that you want to calculate. A complete list of the namelist variables that can be used in the input file can be found in the downloaded file *SALMON/manual/input_variables.md*. :: &units unit_system='A_eV_fs' / &calculation calc_mode='RT' / &control sysname = 'C2H2' / &system iperiodic = 0 al = 16d0, 16d0, 16d0 nstate = 5 nelem = 2 natom = 4 nelec = 10 / &pseudo izatom(1)=6 izatom(2)=1 pseudo_file(1)='C_rps.dat' pseudo_file(2)='H_rps.dat' lmax_ps(1)=1 lmax_ps(2)=0 lloc_ps(1)=1 lloc_ps(2)=0 / &tgrid dt=1.25d-3 nt=4800 / &emfield ae_shape1 = 'Ecos2' epdir_re1 = 0.d0,0.d0,1.d0 rlaser_int_wcm2_1 = 1.d8 omega1=9.28d0 pulse_tw1=6.d0 phi_cep1=0.75d0 / &atomic_coor 'C' 0.000000 0.000000 0.599672 1 'H' 0.000000 0.000000 1.662257 2 'C' 0.000000 0.000000 -0.599672 1 'H' 0.000000 0.000000 -1.662257 2 / We present explanations of the namelist variables that appear in the input file below: **required and recommended variables** **&units** Mandatory: none :: &units unit_system='A_eV_fs' / This namelist specifies the unit system to be used in the input file. If you do not specify it, atomic unit will be used. See :any:`&units in Inputs <&units>` for detail. **&calculation** Mandatory: calc_mode :: &calculation calc_mode = 'RT' / This indicates that the real time (RT) calculation is carried out in the present job. See :any:`&calculation in Inputs <&calculation>` for detail. **&control** Mandatory: none :: &control sysname = 'C2H2' / 'C2H2' defined by ``sysname = 'C2H2'`` will be used in the filenames of output files. **&system** Mandatory: iperiodic, al, nstate, nelem, natom :: &system iperiodic = 0 al = 16d0, 16d0, 16d0 nstate = 5 nelem = 2 natom = 4 nelec = 10 / These namelists and their values should be the same as those used in the ground state calculation. See :any:`&system in Exercise-1 `. **&pseudo** Mandatory: pseudo_file, izatom :: &pseudo izatom(1)=6 izatom(2)=1 pseudo_file(1)='C_rps.dat' pseudo_file(2)='H_rps.dat' lmax_ps(1)=1 lmax_ps(2)=0 lloc_ps(1)=1 lloc_ps(2)=0 / These namelists and their values should be the same as those used in the ground state calculation. See :any:`&pseudo in Exercise-1 `. **&tgrid** Mandatory: dt, Nt :: &tgrid dt=1.25d-3 nt=4800 / ``dt=1.25d-3`` specifies the time step of the time evolution calculation. ``Nt=4800`` specifies the number of time steps in the calculation. **&emfield** Mandatory: ae_shape1, epdir_re1, {rlaser_int1 or amplitude1}, omega1, pulse_tw1, phi_cep1 :: &emfield ae_shape1 = 'Ecos2' epdir_re1 = 0.d0,0.d0,1.d0 rlaser_int_wcm2_1 = 1.d8 omega1=9.28d0 pulse_tw1=6.d0 phi_cep1=0.75d0 / ``ae_shape1 = 'Ecos2'`` indicates that the envelope of the pulsed electric field has a *cos^2* shape. ``epdir_re1 = 0.d0,0.d0,1.d0`` specifies the real part of the unit polarization vector of the pulsed electric field. Using the real polarization vector, it describes a linearly polarized pulse. ``laser_int_wcm2_1 = 1.d8`` specifies the maximum intensity of the applied electric field in unit of W/cm^2. ``omega1=9.26d0`` specifies the average photon energy (frequency multiplied with hbar). ``pulse_tw1=6.d0`` specifies the pulse duration. Note that it is not the FWHM but a full duration of the cos^2 envelope. ``phi_cep1=0.75d0`` specifies the carrier envelope phase of the pulse. As noted above, 'phi_cep1' must be 0.75 (or 0.25) if one employs 'Ecos2' pulse shape, since otherwise the time integral of the electric field does not vanish. See :any:`&emfield in Inputs <&emfield>` for details. **&atomic_coor** Mandatory: atomic_coor or atomic_red_coor (it may be provided as a separate file) :: &atomic_coor 'C' 0.000000 0.000000 0.599672 1 'H' 0.000000 0.000000 1.662257 2 'C' 0.000000 0.000000 -0.599672 1 'H' 0.000000 0.000000 -1.662257 2 / Cartesian coordinates of atoms. The first column indicates the element. Next three columns specify Cartesian coordinates of the atoms. The number in the last column labels the element. They must be the same as those in the ground state calculation. .. _output-files-2: Output files ^^^^^^^^^^^^ After the calculation, following output files are created in the directory that you run the code, +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *C2H2_p.data* | components of the electric dipole | | | moment as functions of time | +-----------------------------------+-----------------------------------+ | *C2H2_ps.data* | power spectrum that is obtained | | | by a time-frequency Fourier | | | transformation of the electric | | | dipole moment | +-----------------------------------+-----------------------------------+ | You may download the above files (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/C2H2_rt_pulse_output.zip Explanations of the files are described below: **C2H2_p.data** For time steps from 1 to nt, - 1 column: time - 2-4 columns: x,y,z components of the dipole moment - 5 column: total energy of the system :: # time[fs], dipoleMoment(x,y,z)[A], Energy[eV] 0.12500E-02 0.18257556E-09 0.11097584E-09 0.48217422E-09 -0.33970414E+03 0.25000E-02 0.91251666E-09 0.54016872E-09 0.19424475E-08 -0.33970414E+03 0.37500E-02 0.24945802E-08 0.14520397E-08 0.43921301E-08 -0.33970414E+03 0.50000E-02 0.50230110E-08 0.29055651E-08 0.78162260E-08 -0.33970414E+03 0.62500E-02 0.83018473E-08 0.48072377E-08 0.12178890E-07 -0.33970413E+03 ... 0.59950E+01 0.10101410E-04 0.55756362E-05 0.32250943E-03 -0.33970394E+03 0.59963E+01 0.10109316E-04 0.55775491E-05 0.38471398E-03 -0.33970394E+03 0.59975E+01 0.10115053E-04 0.55780512E-05 0.44680913E-03 -0.33970394E+03 0.59988E+01 0.10118632E-04 0.55771582E-05 0.50877609E-03 -0.33970394E+03 0.60000E+01 0.10120064E-04 0.55748807E-05 0.57059604E-03 -0.33970394E+03 **C2H2_ps.data** For energy steps from 0 to nenergy, - 1 column: energy - 2-4 columns: x,y,z components of the real part of the time-frequency Fourier transformation of the dipole moment - 5-7 columns: x,y,z components of imaginary part of the time-frequency Fourier transformation of the dipole moment - 8-10 columns: x,y,z components of power spectrum of the dipole moment :: # energy[eV], Re[alpha](x,y,z)[A*fs], Im[alpha](x,y,z)[A*fs], I(x,y,z)[A**2*fs**2] 0.00000E+00 0.12836214E-01 0.60771681E-02 -0.28240863E-02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.16476838E-03 0.36931972E-04 0.79754632E-05 0.10000E-01 0.12829079E-01 0.60737829E-02 -0.28241953E-02 0.35253318E-03 0.16719128E-03 -0.41437502E-04 0.16470954E-03 0.36918792E-04 0.79777964E-05 0.20000E-01 0.12807693E-01 0.60636364E-02 -0.28245142E-02 0.70436985E-03 0.33405211E-03 -0.83009748E-04 0.16453313E-03 0.36879277E-04 0.79847710E-05 0.30000E-01 0.12772113E-01 0.60467557E-02 -0.28250177E-02 0.10548158E-02 0.50025311E-03 -0.12484976E-03 0.16423951E-03 0.36813507E-04 0.79963126E-05 0.40000E-01 0.12722434E-01 0.60231857E-02 -0.28256644E-02 0.14031812E-02 0.66546701E-03 -0.16708711E-03 0.16382925E-03 0.36721612E-04 0.80122973E-05 0.50000E-01 0.12658789E-01 0.59929893E-02 -0.28263966E-02 0.17487830E-02 0.82936975E-03 -0.20984627E-03 0.16330319E-03 0.36603775E-04 0.80325532E-05 ... 0.99601E+01 0.38757368E-03 0.19783358E-03 0.11087376E+01 -0.27465428E-03 -0.29515838E-03 0.10183658E+01 0.22564833E-06 0.12625659E-06 0.22663679E+01 0.99701E+01 0.38446279E-03 0.19754997E-03 0.10416956E+01 -0.27241140E-03 -0.29512921E-03 0.10381647E+01 0.22201960E-06 0.12612724E-06 0.21629157E+01 0.99801E+01 0.38136406E-03 0.19733388E-03 0.97519659E+00 -0.27017795E-03 -0.29508231E-03 0.10542348E+01 0.21843467E-06 0.12601423E-06 0.20624194E+01 0.99901E+01 0.37827032E-03 0.19718146E-03 0.90943725E+00 -0.26795413E-03 -0.29501502E-03 0.10666811E+01 0.21488785E-06 0.12591439E-06 0.19648847E+01 0.10000E+02 0.37517469E-03 0.19708886E-03 0.84460457E+00 -0.26574105E-03 -0.29492512E-03 0.10756186E+01 0.21137435E-06 0.12582485E-06 0.18703122E+01 Crystalline silicon (periodic solids) ------------------------------------- .. _exercise-4: Exercise-4: Dielectric function of crystalline silicon ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In this exercise, we learn the linear response calculation of the crystalline silicon of a diamond structure. Calculation is done in a cubic unit cell that contains eight silicon atoms. Since the ground state calculation costs much less computational time than the time evolution calculation, both calculations are successively executed. After finishing the ground state calculation, an impulsive perturbation is applied to all electrons in the unit cell along *z* direction. Since the dielectric function is isotropic in the diamond structure, calculated dielectric function should not depend on the direction of the perturbation. During the time evolution, electric current averaged over the unit cell volume is calculated. A time-frequency Fourier transformation of the electric current gives us a frequency-dependent conductivity. The dielectric function may be obtained from the conductivity using a standard relation. .. _input-files-3: Input files ^^^^^^^^^^^ To run the code, following files are used: +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *Si_gs_rt_response.inp* | input file that contain namelist | | | variables and their values. | +-----------------------------------+-----------------------------------+ | *Si_rps.dat* | pseodupotential file of silicon | +-----------------------------------+-----------------------------------+ | You may download the above 2 files (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/Si_gs_rt_response_input.zip In the input file *Si_gs_rt_response.inp*, namelists variables are specified. Most of them are mandatory to execute the calculation. This will help you to prepare the input file for other systems that you want to calculate. A complete list of the namelist variables that can be used in the input file can be found in the downloaded file *SALMON/manual/input_variables.md*. :: &calculation calc_mode = 'GS_RT' / &control sysname = 'Si' / &units unit_system = 'a.u.' / &system iperiodic = 3 al = 10.26d0, 10.26d0, 10.26d0 nstate = 32 nelec = 32 nelem = 1 natom = 8 / &pseudo izatom(1) = 14 pseudo_file(1) = './Si_rps.dat' lloc_ps(1) = 2 / &functional xc = 'PZ' / &rgrid num_rgrid = 12, 12, 12 / &kgrid num_kgrid = 4, 4, 4 / &tgrid nt = 3000 dt = 0.16 / &propagation propagator = 'etrs' / &scf ncg = 5 nscf = 120 / &emfield trans_longi = 'tr' ae_shape1 = 'impulse' epdir_re1 = 0., 0., 1. / &analysis nenergy = 1000 de = 0.001 / &atomic_red_coor 'Si' .0 .0 .0 1 'Si' .25 .25 .25 1 'Si' .5 .0 .5 1 'Si' .0 .5 .5 1 'Si' .5 .5 .0 1 'Si' .75 .25 .75 1 'Si' .25 .75 .75 1 'Si' .75 .75 .25 1 / We present explanations of the namelist variables that appear in the input file below: **&calculation** Mandatory: calc_mode :: &calculation calc_mode = 'GS_RT' / This indicates that the ground state (GS) and the real time (RT) calculations are carried out sequentially in the present job. See :any:`&calculation in Inputs <&calculation>` for detail. **&control** Mandatory: none :: &control sysname = 'Si' / 'Si' defined by ``sysname = 'C2H2'`` will be used in the filenames of output files. **&system** Mandatory: periodic, al, state, nelem, natom :: &system iperiodic = 3 al = 10.26d0,10.26d0,10.26d0 nstate = 32 nelec = 32 nelem = 1 natom = 8 / ``iperiodic = 3`` indicates that three dimensional periodic boundary condition (bulk crystal) is assumed. ``al = 10.26d0, 10.26d0, 10.26d0`` specifies the lattice constans of the unit cell. ``nstate = 32`` indicates the number of Kohn-Sham orbitals to be solved. ``nelec = 32`` indicate the number of valence electrons in the system. ``nelem = 1`` and ``natom = 8`` indicate the number of elements and the number of atoms in the system, respectively. See :any:`&system in Inputs <&system>` for more information. **&pseudo** :: &pseudo izatom(1)=14 pseudo_file(1) = './Si_rps.dat' lloc_ps(1)=2 / ``izatom(1) = 14`` indicates the atomic number of the element #1. ``pseudo_file(1) = 'Si_rps.dat'`` indicates the pseudopotential filename of element #1. ``lloc_ps(1) = 2`` indicate the angular momentum of the pseudopotential that will be treated as local. **&functional** :: &functional xc = 'PZ' / This indicates that the adiabatic local density approximation with the Perdew-Zunger functional is used. We note that meta-GGA functionals that reasonably reproduce the band gap of various insulators may also be used in the calculation of periodic systems. See :any:`&functional in Inputs <&functional>` for detail. **&rgrid** Mandatory: dl or num_rgrid :: &rgrid num_rgrid = 12,12,12 / ``num_rgrid=12,12,12`` specifies the number of the grids for each Cartesian direction. See :any:`&rgrid in Inputs <&rgrid>` for more information. **&kgrid** Mandatory: none This namelist provides grid spacing of k-space for periodic systems. :: &kgrid num_kgrid = 4,4,4 / **&tgrid** :: &tgrid nt=3000 dt=0.16 / ``dt=0.16`` specifies the time step of the time evolution calculation. ``nt=3000`` specifies the number of time steps in the calculation. **&propagation** :: &propagation propagator='etrs' / ``propagator = 'etrs'`` indicates the use of enforced time-reversal symmetry propagator. See :any:`&propagation in Inputs <&propagation>` for more information. **&scf** Mandatory: nscf This namelists specify parameters related to the self-consistent field calculation. :: &scf ncg = 5 nscf = 120 / ``ncg = 5`` is the number of conjugate-gradient iterations in solving the Kohn-Sham equation. Usually this value should be 4 or 5. ``nscf = 120`` is the number of scf iterations. **&emfield** Mandatory:ae_shape1 :: &emfield trans_longi = 'tr' ae_shape1 = 'impulse' epdir_re1 = 0.,0.,1. / ``as_shape1 = 'impulse'`` indicates that a weak impulsive field is applied to all electrons at *t=0* ``epdir_re1(3)`` specify a unit vector that indicates the direction of the impulse. ``trans_longi = 'tr'`` specifies the treatment of the polarization in the time evolution calculation, transverse for 'tr' and longitudinal for 'lo'. See :any:`&emfield in Inputs <&emfield>` for detail. **&analysis** :: &analysis nenergy=1000 de=0.001 / ``nenergy=1000`` specifies the number of energy steps, and ``de=0.001`` specifies the energy spacing in the time-frequency Fourier transformation. **&atomic_red_coor** Mandatory: atomic_coor or atomic_red_coor (they may be provided as a separate file) :: &atomic_red_coor 'Si' .0 .0 .0 1 'Si' .25 .25 .25 1 'Si' .5 .0 .5 1 'Si' .0 .5 .5 1 'Si' .5 .5 .0 1 'Si' .75 .25 .75 1 'Si' .25 .75 .75 1 'Si' .75 .75 .25 1 / Cartesian coordinates of atoms are specified in a reduced coordinate system. First column indicates the element, next three columns specify reduced Cartesian coordinates of the atoms, and the last column labels the element. .. _output-files-3: Output files ^^^^^^^^^^^^ After the calculation, following output files are created in the directory that you run the code, +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *Si_gs_info.data* | information of ground state | | | calculation | +-----------------------------------+-----------------------------------+ | *Si_eigen.data* | energy eigenvalues of orbitals | +-----------------------------------+-----------------------------------+ | *Si_k.data* | information on k-points | +-----------------------------------+-----------------------------------+ | *Si_rt.data* | electric field, vector potential, | | | and current as functions of time | +-----------------------------------+-----------------------------------+ | *Si_force.data* | force acting on atoms | +-----------------------------------+-----------------------------------+ | *Si_lr.data* | Fourier spectra of the dielectric | | | functions | +-----------------------------------+-----------------------------------+ | *Si_gs_rt_response.out* | standard output file | +-----------------------------------+-----------------------------------+ | You may download the above files (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/Si_gs_rt_response_output.zip Explanations of the output files are described below: **Si_gs_info.data** Results of the ground state as well as input parameters are provided. :: #--------------------------------------------------------- #grid information----------------------------------------- #aL = 10.2600000000000 10.2600000000000 10.2600000000000 #al(1),al(2),al(3) = 10.2600000000000 10.2600000000000 10.2600000000000 #aLx,aLy,aLz = 10.2600000000000 10.2600000000000 10.2600000000000 #bLx,bLy,bLz = 0.612396228769940 0.612396228769940 0.612396228769940 #Nd = 4 #NLx,NLy,NLz= 12 12 12 #NL = 1728 #Hx,Hy,Hz = 0.855000000000000 0.855000000000000 0.855000000000000 #(pi/max(Hx,Hy,Hz))**2 = 13.5010490764192 #(pi/Hx)**2+(pi/Hy)**2+(pi/Hz)**2 = 40.5031472292576 #Hxyz = 0.625026375000000 #NKx,NKy,NKz= 4 4 4 #NKxyz = 64 #Sym= 1 #NK = 64 #NEwald, aEwald = 4 0.500000000000000 #--------------------------------------------------------- #GS calc. option------------------------------------------ #FSset_option =n #Ncg= 5 #Nmemory_MB,alpha_MB = 8 0.750000000000000 #NFSset_start,NFSset_every = 75 25 #Nscf= 120 #Nscf_conv= 120 #NI,NE= 8 1 #Zatom= 14 #Lref= 2 #i,Kion(ia)(Rion(j,a),j=1,3) # 1 1 # 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 # 2 1 # 2.56500000000000 2.56500000000000 2.56500000000000 # 3 1 # 5.13000000000000 0.000000000000000E+000 5.13000000000000 # 4 1 # 0.000000000000000E+000 5.13000000000000 5.13000000000000 # 5 1 # 5.13000000000000 5.13000000000000 0.000000000000000E+000 # 6 1 # 7.69500000000000 2.56500000000000 7.69500000000000 # 7 1 # 2.56500000000000 7.69500000000000 7.69500000000000 # 8 1 # 7.69500000000000 7.69500000000000 2.56500000000000 #--------------------------------------------------------- #GS information------------------------------------------- #NB,Nelec= 32 32 #Eall = -31.2658878806236 #ddns(iter = Nscf_conv) 2.798849279746559E-010 #ddns_abs_1e(iter = Nscf_conv) 2.364732236264119E-010 #esp_var_ave(iter = Nscf_conv) 1.196976937606010E-009 #esp_var_max(iter = Nscf_conv) 4.031276129792963E-009 #NBoccmax is 16 #--------------------------------------------------------- #band information----------------------------------------- #Bottom of VB -0.194802063980608 #Top of VB 0.216731478175047 #Bottom of CB 0.255681914576368 #Top of CB 0.533214678236198 #Fundamental gap 3.895043640132098E-002 #Fundamental gap[eV] 1.05990369517819 #BG between same k-point 3.895043648321342E-002 #BG between same k-point[eV] 1.05990369740661 #Physicaly upper bound of CB for DOS 0.454100922291231 #Physicaly upper bound of CB for eps(omega) 0.609752486428134 #--------------------------------------------------------- #iter total-energy ddns/nelec esp_var_ave esp_var_max 1 -0.2059780903E+02 0.5134199377E+00 0.1332473220E-01 0.1986049398E-01 2 -0.2600097163E+02 0.3186108570E+00 0.1526707771E-01 0.2520724900E-01 3 -0.2866336088E+02 0.1363849859E+00 0.6359704895E-02 0.1247448390E-01 4 -0.3006244467E+02 0.1245614607E+00 0.5868323970E-02 0.1942874074E-01 5 -0.3096872596E+02 0.7495214064E-01 0.2566344769E-02 0.1102001262E-01 ... 115 -0.3126588788E+02 0.1355175468E-09 0.1208579378E-08 0.4031265522E-08 116 -0.3126588788E+02 0.1452261250E-09 0.1204317051E-08 0.4031272647E-08 117 -0.3126588788E+02 0.1419175726E-09 0.1198067051E-08 0.4031255783E-08 118 -0.3126588788E+02 0.1686476198E-09 0.1198945057E-08 0.4031251395E-08 119 -0.3126588788E+02 0.2159059511E-09 0.1200809994E-08 0.4666412657E-08 120 -0.3126588788E+02 0.2364732236E-09 0.1196976938E-08 0.4031276130E-08 **Si_eigen.data** Orbital energies in the ground state calculation. :: # Ground state eigenenergies # ik: k-point index # ib: Band index # energy: Eigenenergy # occup: Occupation # 1:ik[none] 2:ib[none] 3:energy[a.u.] 4:occup[none] 1 1 -1.38676447625070E-001 2.00000000000000E+000 1 2 -1.10783431105032E-001 2.00000000000000E+000 1 3 -1.10783428207470E-001 2.00000000000000E+000 1 4 -1.10783427594037E-001 2.00000000000000E+000 1 5 -1.57456296850928E-002 2.00000000000000E+000 ... 64 28 3.68051950109468E-001 0.00000000000000E+000 64 29 4.91528586750629E-001 0.00000000000000E+000 64 30 4.91528587785578E-001 0.00000000000000E+000 64 31 4.91528588058071E-001 0.00000000000000E+000 64 32 5.14831956233275E-001 0.00000000000000E+000 **Si_k.data** Information on k-points. :: # k-point distribution # ik: k-point index # kx,ky,kz: Reduced coordinate of k-points # wk: Weight of k-point # 1:ik[none] 2:kx[none] 3:ky[none] 4:kz[none] 5:wk[none] 1 -3.75000000000000E-001 -3.75000000000000E-001 -3.75000000000000E-001 1.00000000000000E+000 2 -3.75000000000000E-001 -3.75000000000000E-001 -1.25000000000000E-001 1.00000000000000E+000 3 -3.75000000000000E-001 -3.75000000000000E-001 1.25000000000000E-001 1.00000000000000E+000 4 -3.75000000000000E-001 -3.75000000000000E-001 3.75000000000000E-001 1.00000000000000E+000 5 -3.75000000000000E-001 -1.25000000000000E-001 -3.75000000000000E-001 1.00000000000000E+000 ... 60 3.75000000000000E-001 1.25000000000000E-001 3.75000000000000E-001 1.00000000000000E+000 61 3.75000000000000E-001 3.75000000000000E-001 -3.75000000000000E-001 1.00000000000000E+000 62 3.75000000000000E-001 3.75000000000000E-001 -1.25000000000000E-001 1.00000000000000E+000 63 3.75000000000000E-001 3.75000000000000E-001 1.25000000000000E-001 1.00000000000000E+000 64 3.75000000000000E-001 3.75000000000000E-001 3.75000000000000E-001 1.00000000000000E+000 **Si_rt.data** Results of time evolution calculation. *Ac_ext_x,y,z* are applied vector potential. For transverse calculation specified by trans_longi = 'tr', *Ac_tot_x,y,z* are equal to *Ac_ext_x,y,z*. For longitudinal calculation specified by ``trans_longi = 'lo'``, *Ac_tot_x,y,z* are the sum of *Ac_ext_x,y,z* and the induced polarization. The same relation holds for electric fields of *E_ext_x,y,z* and *E_tot_x,y,z*. *Jm_x,y,z* are macroscopic current. *Eall* and *Eall-Eall0* are total energy and electronic excitation energy, respectively. ''Tion' is the kinetic energy of atoms. *Temperature_ion* is the temperature estimated from the atomic motion. :: # Real time calculation # Ac_ext: External vector potential field # E_ext: External electric field # Ac_tot: Total vector potential field # E_tot: Total electric field # Jm: Matter current density # Eall: Total energy # Eall0: Initial energy # Tion: Kinetic energy of ions # 1:Time[a.u.] 2:Ac_ext_x[a.u.] 3:Ac_ext_y[a.u.] 4:Ac_ext_z[a.u.] 5:E_ext_x[a.u.] 6:E_ext_y[a.u.] 7:E_ext_z[a.u.] 8:Ac_tot_x[a.u.] 9:Ac_tot_y[a.u.] 10:Ac_tot_z[a.u.] 11:E_tot_x[a.u.] 12:E_tot_y[a.u.] 13:E_tot_z[a.u.] 14:Jm_x[a.u.] 15:Jm_y[a.u.] 16:Jm_z[a.u.] 17:Eall[a.u.] 18:Eall-Eall0[a.u.] 19:Tion[a.u.] 20:Temperature_ion[K] 0.00000000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -8.65860214541267E-013 1.04880923197437E-012 2.79610491078699E-004 -3.12643773655041E+001 1.51051511945255E-003 0.00000000000000E+000 0.00000000000000E+000 0.16000000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -7.80220609595942E-013 1.25669598865900E-012 2.77640461612200E-004 -3.12643780708603E+001 1.50980976327020E-003 0.00000000000000E+000 0.00000000000000E+000 0.32000000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -6.65469342838961E-013 1.44166600383436E-012 2.72256619397668E-004 -3.12643780794812E+001 1.50980114240440E-003 0.00000000000000E+000 0.00000000000000E+000 0.48000000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -5.07694047189471E-013 1.65330407801294E-012 2.65100129464106E-004 -3.12643780384343E+001 1.50984218925032E-003 0.00000000000000E+000 0.00000000000000E+000 0.64000000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -3.21400178809861E-013 1.87627749522222E-012 2.57460045574299E-004 -3.12643779799564E+001 1.50990066720169E-003 0.00000000000000E+000 0.00000000000000E+000 ... 479.36000000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -7.94263263896610E-013 3.79557494087330E-012 -3.59285386087180E-006 -3.12643819342307E+001 1.50594639281820E-003 0.00000000000000E+000 0.00000000000000E+000 479.52000000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -5.67828280529921E-013 3.78374121551490E-012 -2.90523320634650E-006 -3.12643819351033E+001 1.50594552028593E-003 0.00000000000000E+000 0.00000000000000E+000 479.68000000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -3.61839313869103E-013 3.74173331529800E-012 -2.24958911411780E-006 -3.12643819359872E+001 1.50594463632103E-003 0.00000000000000E+000 0.00000000000000E+000 479.84000000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -1.73847971134404E-013 3.66573716775167E-012 -1.63591499831827E-006 -3.12643819368722E+001 1.50594375133295E-003 0.00000000000000E+000 0.00000000000000E+000 480.00000000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.00000000000000E-002 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 3.16688678319438E-016 3.55459629253500E-012 -1.06271326454723E-006 -3.12643819377811E+001 1.50594284247063E-003 0.00000000000000E+000 0.00000000000000E+000 **Si_force.data** Force acting on each atom during time evolution. :: # Force calculatio # force: Force # time[a.u.] force[a.u.] 0.000000E+000 -0.663815E-008 0.381467E-008 0.178186E-002 0.280496E-008 0.236613E-009 0.178187E-002 0.190620E-008 0.346038E-008 0.178186E-002 -0.255965E-008 0.162582E-008 0.178187E-002 -0.713246E-009 -0.607621E-008 0.178187E-002 -0.124821E-008 0.434748E-008 0.178187E-002 -0.932639E-008 -0.112168E-007 0.178187E-002 -0.505708E-008 -0.289586E-008 0.178187E-002 0.160000E+001 -0.131290E-008 0.165516E-008 0.339940E-002 -0.941496E-009 -0.767670E-009 0.339940E-002 0.138786E-008 0.172143E-008 0.339940E-002 -0.451825E-009 -0.106362E-008 0.339940E-002 0.298232E-009 0.383164E-009 0.339940E-002 -0.296521E-009 -0.195556E-008 0.339940E-002 0.348404E-009 -0.849494E-009 0.339940E-002 -0.297429E-009 0.578589E-009 0.339940E-002 0.320000E+001 0.615410E-008 -0.278186E-008 0.457711E-002 -0.486320E-008 -0.116861E-008 0.457711E-002 -0.112143E-008 -0.166802E-008 0.457711E-002 0.253122E-008 -0.368112E-008 0.457710E-002 0.935799E-009 0.830658E-008 0.457711E-002 0.621491E-009 -0.804263E-008 0.457710E-002 0.123310E-007 0.130141E-007 0.457711E-002 0.636436E-008 0.330898E-008 0.457710E-002 0.480000E+001 0.635332E-008 -0.357991E-008 0.446307E-002 -0.388157E-008 -0.157542E-008 0.446307E-002 -0.193530E-008 -0.255271E-008 0.446308E-002 0.230966E-008 -0.227850E-008 0.446306E-002 -0.341100E-009 0.746659E-008 0.446307E-002 0.734950E-009 -0.635113E-008 0.446307E-002 0.943051E-008 0.126831E-007 0.446307E-002 0.494958E-008 0.330406E-008 0.446306E-002 0.640000E+001 0.407644E-009 0.406484E-010 0.320569E-002 0.134973E-008 -0.648732E-009 0.320569E-002 -0.148635E-009 -0.650159E-009 0.320569E-002 -0.231759E-009 0.163276E-008 0.320569E-002 -0.961535E-009 -0.941812E-009 0.320569E-002 0.847442E-009 0.130553E-008 0.320569E-002 -0.264725E-008 -0.351407E-009 0.320569E-002 -0.141512E-008 0.421806E-009 0.320569E-002 ... 0.473600E+003 0.246506E-009 0.251205E-009 -0.148216E-003 -0.416554E-011 0.779853E-009 -0.148215E-003 -0.115879E-009 0.104374E-008 -0.148217E-003 0.913004E-009 -0.465967E-009 -0.148217E-003 0.176729E-009 -0.270103E-009 -0.148216E-003 0.962326E-009 0.799398E-009 -0.148218E-003 0.220066E-009 -0.152063E-008 -0.148216E-003 0.571304E-009 -0.132336E-008 -0.148217E-003 0.475200E+003 -0.504521E-009 -0.437234E-010 -0.316399E-003 -0.459509E-009 0.105940E-008 -0.316398E-003 0.105290E-009 0.547364E-009 -0.316401E-003 0.181887E-009 -0.343314E-009 -0.316399E-003 -0.804290E-010 -0.500340E-009 -0.316400E-003 0.372911E-009 0.141733E-008 -0.316401E-003 -0.244574E-009 -0.259207E-008 -0.316400E-003 0.202885E-009 -0.147976E-008 -0.316400E-003 0.476800E+003 -0.475521E-009 -0.161693E-009 -0.415900E-003 -0.925954E-009 0.240941E-009 -0.415900E-003 0.291237E-009 -0.453400E-009 -0.415902E-003 -0.580783E-009 -0.751060E-010 -0.415900E-003 -0.683807E-009 -0.202391E-010 -0.415902E-003 -0.618227E-011 0.138283E-008 -0.415902E-003 -0.274419E-009 -0.218740E-008 -0.415901E-003 0.175364E-009 -0.657477E-009 -0.415900E-003 0.478400E+003 0.303920E-009 -0.402101E-009 -0.439830E-003 -0.134116E-008 -0.816066E-009 -0.439830E-003 0.318015E-009 -0.927198E-009 -0.439831E-003 -0.150791E-008 -0.169799E-009 -0.439831E-003 -0.702142E-009 0.881452E-009 -0.439831E-003 -0.618720E-009 0.779075E-009 -0.439831E-003 0.540736E-009 0.352559E-009 -0.439830E-003 0.382572E-009 0.794098E-009 -0.439830E-003 0.480000E+003 0.957060E-009 -0.635421E-009 -0.336591E-003 -0.873698E-009 -0.134192E-008 -0.336592E-003 -0.660852E-010 -0.282862E-009 -0.336591E-003 -0.156118E-008 -0.398368E-009 -0.336593E-003 -0.480887E-010 0.961042E-009 -0.336592E-003 -0.121634E-008 -0.277887E-009 -0.336591E-003 0.104632E-008 0.244269E-008 -0.336591E-003 0.412975E-009 0.133042E-008 -0.336591E-003 **Si_lr_data** In transverse calculation specified by ``trans_longi = 'tr'``, time-frequency Fourier transformation of the macroscopic current gives the conductivity of the system. Then the dielectric function is calculated. :: # Fourier-transform spectra # sigma: Conductivity # eps: Dielectric constant # 1:Frequency[a.u.] 2:Re(sigma_x)[a.u.] 3:Re(sigma_y)[a.u.] 4:Re(sigma_z)[a.u.] 5:Im(sigma_x)[a.u.] 6:Im(sigma_y)[a.u.] 7:Im(sigma_z)[a.u.] 8:Re(eps_x)[none] 9:Re(eps_y)[none] 10:Re(eps_z)[none] 11:Im(eps_x)[none] 12:Im(eps_y)[none] 13:Im(eps_z)[none] 0.00100000 -1.03308449903699E-010 -2.55685769383253E-011 3.36356888185559E-005 9.38757700305135E-010 2.38405472055867E-010 -1.31839196070590E-003 -1.17967771791178E-005 -2.99589151834528E-006 1.75674019932220E+001 -1.29821226908484E-006 -3.21304213888753E-007 4.22678531563230E-001 0.00200000 -4.05463997396279E-010 -1.00459000515141E-010 1.32405016849080E-004 1.82449482725124E-009 4.64061580393162E-010 -2.62118275831395E-003 -1.14636390916102E-005 -2.91578490355285E-006 1.74693769944707E+001 -2.54760543103060E-006 -6.31202516010683E-007 8.31925256463007E-001 0.00300000 -8.83952914849078E-010 -2.19401192737277E-010 2.90077713140610E-004 2.60896580505206E-009 6.65304400028214E-010 -3.89397682658909E-003 -1.09284104088247E-005 -2.78682055403947E-006 1.73110519888816E+001 -3.70269331121220E-006 -9.19025567056355E-007 1.21507468343022E+000 0.00400000 -1.50380858485809E-009 -3.74177620806077E-010 4.96861248105049E-004 3.25293966934794E-009 8.32525470173577E-010 -5.12467699872510E-003 -1.02194113677943E-005 -2.61545590102370E-006 1.70996476112154E+001 -4.72435400259545E-006 -1.17551366466208E-006 1.56093564690028E+000 0.00500000 -2.22112273174113E-009 -5.54404046892706E-010 7.40224957578435E-004 3.72943718693087E-009 9.58925096932178E-010 -6.30436402916416E-003 -9.37309797478928E-006 -2.41004163189201E-006 1.68445949756623E+001 -5.58229028540739E-006 -1.39336934467086E-006 1.86038823098578E+000 ... 0.99600000 -2.76735852669967E-009 -1.50791378263185E-009 4.18549443295463E-003 -3.48281730295103E-010 -2.38950132823120E-011 2.58042637047465E-002 4.39421415772947E-009 3.01479510783703E-010 6.74431785999496E-001 -3.49153141258183E-008 -1.90251038625021E-008 5.28077050691215E-002 0.99700000 -2.79907084112808E-009 -1.43228946145853E-009 4.21502473100264E-003 -4.64190825344567E-010 -1.65916319932293E-010 2.58406831005378E-002 5.85074618562197E-009 2.09123968629867E-009 6.74299297121799E-001 -3.52800015701720E-008 -1.80528387158764E-008 5.31269437497179E-002 0.99800000 -2.80549388829912E-009 -1.33123845334775E-009 4.22285528976820E-003 -5.93339164267705E-010 -2.85965452283521E-010 2.58784739372621E-002 7.47106196212637E-009 3.60074935500759E-009 6.74149805180691E-001 -3.53255270107077E-008 -1.67623605018579E-008 5.31723092405153E-002 0.99900000 -2.78217278629315E-009 -1.21099840604532E-009 4.20947560905717E-003 -7.28526525583285E-010 -3.79100172729291E-010 2.59111098101567E-002 9.16409842129228E-009 4.76868195243629E-009 6.74065456552766E-001 -3.49968111569009E-008 -1.52330878716353E-008 5.29507813768946E-002 1.00000000 -2.72693112746934E-009 -1.07872277288261E-009 4.17738539625698E-003 -8.61256547421816E-010 -4.42238226589537E-010 2.59324188318589E-002 1.08228689689459E-008 5.55732945516107E-009 6.74123614032074E-001 -3.42676271876120E-008 -1.35556301541920E-008 5.24945730883769E-002 **Si_gs_rt_response.out** Standard output file. .. _exercise-5: Exercise-5: Electron dynamics in crystalline silicon under a pulsed electric field ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In this exercise, we learn the calculation of electron dynamics in a unit cell of crystalline silicon of a diamond structure. Calculation is done in a cubic unit cell that contains eight silicon atoms. Since the ground state calculation costs much less computational time than the time evolution calculation, both calculations are successively executed. After finishing the ground state calculation, a pulsed electric field that has cos^2 envelope shape is applied. The parameters that characterize the pulsed field such as magnitude, frequency, polarization, and carrier envelope phase are specified in the input file. .. _input-files-4: Input files ^^^^^^^^^^^ To run the code, following files are used: +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *Si_gs_rt_pulse.inp* | input file that contain namelist | | | variables and their values. | +-----------------------------------+-----------------------------------+ | *Si_rps.dat* | pseodupotential file for Carbon | +-----------------------------------+-----------------------------------+ | You may download the above 2 files (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/Si_gs_rt_pulse_input.zip In the input file *Si_gs_rt_pulse.inp*, namelists variables are specified. Most of them are mandatory to execute the calculation. This will help you to prepare the input file for other systems that you want to calculate. A complete list of the namelist variables that can be used in the input file can be found in the downloaded file *SALMON/manual/input_variables.md*. :: &calculation calc_mode = 'GS_RT' / &control sysname = 'Si' / &units unit_system = 'a.u.' / &system iperiodic = 3 al = 10.26d0, 10.26d0, 10.26d0 nstate = 32 nelec = 32 nelem = 1 natom = 8 / &pseudo izatom(1) = 14 pseudo_file(1) = './Si_rps.dat' lloc_ps(1) = 2 / &functional xc = 'PZ' / &rgrid num_rgrid = 12, 12, 12 / &kgrid num_kgrid = 4, 4, 4 / &tgrid nt = 3000 dt = 0.16 / &propagation propagator = 'etrs' / &scf ncg = 5 nscf = 120 / &emfield trans_longi = 'tr' ae_shape1 = 'Acos2' rlaser_int_wcm2_1 = 1d14 pulse_tw1 = 441.195136248d0 omega1 = 0.05696145187d0 epdir_re1 = 0., 0., 1. / &atomic_red_coor 'Si' .0 .0 .0 1 'Si' .25 .25 .25 1 'Si' .5 .0 .5 1 'Si' .0 .5 .5 1 'Si' .5 .5 .0 1 'Si' .75 .25 .75 1 'Si' .25 .75 .75 1 'Si' .75 .75 .25 1 / We present explanations of the namelist variables that appear in the input file below: XXXX hoge input exe5 XXXXX **&calculation** Mandatory: calc_mode :: &calculation calc_mode = 'GS_RT' / This indicates that the ground state (GS) and the real time (RT) calculations are carried out sequentially in the present job. See :any:`&calculation in Inputs <&calculation>` for detail. **&control** Mandatory: none :: &control sysname = 'Si' / 'Si' defined by ``sysname = 'C2H2'`` will be used in the filenames of output files. **&system** Mandatory: periodic, al, state, nelem, natom :: &system iperiodic = 3 al = 10.26d0,10.26d0,10.26d0 nstate = 32 nelec = 32 nelem = 1 natom = 8 / ``iperiodic = 3`` indicates that three dimensional periodic boundary condition (bulk crystal) is assumed. ``al = 10.26d0, 10.26d0, 10.26d0`` specifies the lattice constans of the unit cell. ``nstate = 32`` indicates the number of Kohn-Sham orbitals to be solved. ``nelec = 32`` indicate the number of valence electrons in the system. ``nelem = 1`` and ``natom = 8`` indicate the number of elements and the number of atoms in the system, respectively. See :any:`&system Inputs <&system>` for more information. **&pseudo** :: &pseudo izatom(1)=14 pseudo_file(1) = './Si_rps.dat' lloc_ps(1)=2 / ``izatom(1) = 14`` indicates the atomic number of the element #1. ``pseudo_file(1) = 'Si_rps.dat'`` indicates the pseudopotential filename of element #1. ``lloc_ps(1) = 2`` indicate the angular momentum of the pseudopotential that will be treated as local. **&functional** :: &functional xc = 'PZ' / This indicates that the adiabatic local density approximation with the Perdew-Zunger functional is used. We note that meta-GGA functionals that reasonably reproduce the band gap of various insulators may also be used in the calculation of periodic systems. See :any:`&functional in Inputs <&functional>` for detail. **&rgrid** Mandatory: dl or num_rgrid :: &rgrid num_rgrid = 12,12,12 / ``num_rgrid=12,12,12`` specifies the number of the grids for each Cartesian direction. See :any:`&rgrid in Inputs <&rgrid>` for more information. **&kgrid** Mandatory: none This namelist provides grid spacing of k-space for periodic systems. :: &kgrid num_kgrid = 4,4,4 / **&tgrid** :: &tgrid nt=3000 dt=0.16 / ``dt=0.16`` specifies the time step of the time evolution calculation. ``nt=3000`` specifies the number of time steps in the calculation. **&propagation** :: &propagation propagator='etrs' / ``propagator = 'etrs'`` indicates the use of enforced time-reversal symmetry propagator. See :any:`&propagation in Inputs <&propagation>` for more information. **&scf** Mandatory: nscf This namelists specify parameters related to the self-consistent field calculation. :: &scf ncg = 5 nscf = 120 / ``ncg = 5`` is the number of conjugate-gradient iterations in solving the Kohn-Sham equation. Usually this value should be 4 or 5. ``nscf = 120`` is the number of scf iterations. **&emfield** :: &emfield trans_longi = 'tr' ae_shape1 = 'Acos2' rlaser_int_wcm2_1 = 1d14 pulse_tw1 = 441.195136248d0 omega1 = 0.05696145187d0 epdir_re1 = 0.,0.,1. / This namelist specifies the pulsed electric field applied to the system ``ae_shape1 = 'Acos2'`` specifies the envelope of the pulsed electric field, cos^2 envelope for the vector potential. ``epdir_re1 = 0.,0.,1.`` specify the real part of the unit polarization vector of the pulsed electric field. Specifying only the real part, it describes a linearly polarized pulse. ``laser_int_wcm2_1 = 1d14`` specifies the maximum intensity of the applied electric field in unit of W/cm^2. ``omega1=0.05696145187d0`` specifies the average photon energy (frequency multiplied with hbar). ``pulse_tw1=441.195136248d0`` specifies the pulse duration. Note that it is not the FWHM but a full duration of the cos^2 envelope. ``trans_longi = 'tr'`` specifies the treatment of the polarization in the time evolution calculation, 'tr' indicating transverse. See :any:`&emfield in Inputs <&emfield>` for detail. **&atomic_red_coor** Mandatory: atomic_coor or atomic_red_coor (they may be provided as a separate file) :: &atomic_red_coor 'Si' .0 .0 .0 1 'Si' .25 .25 .25 1 'Si' .5 .0 .5 1 'Si' .0 .5 .5 1 'Si' .5 .5 .0 1 'Si' .75 .25 .75 1 'Si' .25 .75 .75 1 'Si' .75 .75 .25 1 / Cartesian coordinates of atoms are specified in a reduced coordinate system. First column indicates the element, next three columns specify reduced Cartesian coordinates of the atoms, and the last column labels the element. .. _output-files-4: Output files ^^^^^^^^^^^^ After the calculation, following output files are created in the directory that you run the code, +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *Si_gs_info.data* | information of ground state | | | calculation | +-----------------------------------+-----------------------------------+ | *Si_eigen.data* | energy eigenvalues of orbitals | +-----------------------------------+-----------------------------------+ | *Si_k.data* | information on k-points | +-----------------------------------+-----------------------------------+ | *Si_rt.data* | electric field, vector potential, | | | and current as functions of time | +-----------------------------------+-----------------------------------+ | *Si_force.data* | force acting on atoms | +-----------------------------------+-----------------------------------+ | *Si_lr.data* | Fourier transformations of | | | various quantities | +-----------------------------------+-----------------------------------+ | *Si_gs_rt_pulse.out* | standard output file | +-----------------------------------+-----------------------------------+ | You may download the above files (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/Si_gs_rt_pulse_output.zip Explanations of the output files are described below: **Si_gs_info.data** Results of the ground state as well as input parameters are provided. :: #--------------------------------------------------------- #grid information----------------------------------------- #aL = 10.2600000000000 10.2600000000000 10.2600000000000 #al(1),al(2),al(3) = 10.2600000000000 10.2600000000000 10.2600000000000 #aLx,aLy,aLz = 10.2600000000000 10.2600000000000 10.2600000000000 #bLx,bLy,bLz = 0.612396228769940 0.612396228769940 0.612396228769940 #Nd = 4 #NLx,NLy,NLz= 12 12 12 #NL = 1728 #Hx,Hy,Hz = 0.855000000000000 0.855000000000000 0.855000000000000 #(pi/max(Hx,Hy,Hz))**2 = 13.5010490764192 #(pi/Hx)**2+(pi/Hy)**2+(pi/Hz)**2 = 40.5031472292576 #Hxyz = 0.625026375000000 #NKx,NKy,NKz= 4 4 4 #NKxyz = 64 #Sym= 1 #NK = 64 #NEwald, aEwald = 4 0.500000000000000 #--------------------------------------------------------- #GS calc. option------------------------------------------ #FSset_option =n #Ncg= 5 #Nmemory_MB,alpha_MB = 8 0.750000000000000 #NFSset_start,NFSset_every = 75 25 #Nscf= 120 #Nscf_conv= 120 #NI,NE= 8 1 #Zatom= 14 #Lref= 2 #i,Kion(ia)(Rion(j,a),j=1,3) # 1 1 # 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 # 2 1 # 2.56500000000000 2.56500000000000 2.56500000000000 # 3 1 # 5.13000000000000 0.000000000000000E+000 5.13000000000000 # 4 1 # 0.000000000000000E+000 5.13000000000000 5.13000000000000 # 5 1 # 5.13000000000000 5.13000000000000 0.000000000000000E+000 # 6 1 # 7.69500000000000 2.56500000000000 7.69500000000000 # 7 1 # 2.56500000000000 7.69500000000000 7.69500000000000 # 8 1 # 7.69500000000000 7.69500000000000 2.56500000000000 #--------------------------------------------------------- #GS information------------------------------------------- #NB,Nelec= 32 32 #Eall = -31.2658878806236 #ddns(iter = Nscf_conv) 2.798849279746559E-010 #ddns_abs_1e(iter = Nscf_conv) 2.364732236264119E-010 #esp_var_ave(iter = Nscf_conv) 1.196976937606010E-009 #esp_var_max(iter = Nscf_conv) 4.031276129792963E-009 #NBoccmax is 16 #--------------------------------------------------------- #band information----------------------------------------- #Bottom of VB -0.194802063980608 #Top of VB 0.216731478175047 #Bottom of CB 0.255681914576368 #Top of CB 0.533214678236198 #Fundamental gap 3.895043640132098E-002 #Fundamental gap[eV] 1.05990369517819 #BG between same k-point 3.895043648321342E-002 #BG between same k-point[eV] 1.05990369740661 #Physicaly upper bound of CB for DOS 0.454100922291231 #Physicaly upper bound of CB for eps(omega) 0.609752486428134 #--------------------------------------------------------- #iter total-energy ddns/nelec esp_var_ave esp_var_max 1 -0.2059780903E+02 0.5134199377E+00 0.1332473220E-01 0.1986049398E-01 2 -0.2600097163E+02 0.3186108570E+00 0.1526707771E-01 0.2520724900E-01 3 -0.2866336088E+02 0.1363849859E+00 0.6359704895E-02 0.1247448390E-01 4 -0.3006244467E+02 0.1245614607E+00 0.5868323970E-02 0.1942874074E-01 5 -0.3096872596E+02 0.7495214064E-01 0.2566344769E-02 0.1102001262E-01 ... 115 -0.3126588788E+02 0.1355175468E-09 0.1208579378E-08 0.4031265522E-08 116 -0.3126588788E+02 0.1452261250E-09 0.1204317051E-08 0.4031272647E-08 117 -0.3126588788E+02 0.1419175726E-09 0.1198067051E-08 0.4031255783E-08 118 -0.3126588788E+02 0.1686476198E-09 0.1198945057E-08 0.4031251395E-08 119 -0.3126588788E+02 0.2159059511E-09 0.1200809994E-08 0.4666412657E-08 120 -0.3126588788E+02 0.2364732236E-09 0.1196976938E-08 0.4031276130E-08 **Si_eigen.data** Orbital energies in the ground state calculation. :: # Ground state eigenenergies # ik: k-point index # ib: Band index # energy: Eigenenergy # occup: Occupation # 1:ik[none] 2:ib[none] 3:energy[a.u.] 4:occup[none] 1 1 -1.38676447625070E-001 2.00000000000000E+000 1 2 -1.10783431105032E-001 2.00000000000000E+000 1 3 -1.10783428207470E-001 2.00000000000000E+000 1 4 -1.10783427594037E-001 2.00000000000000E+000 1 5 -1.57456296850928E-002 2.00000000000000E+000 ... 64 28 3.68051950109468E-001 0.00000000000000E+000 64 29 4.91528586750629E-001 0.00000000000000E+000 64 30 4.91528587785578E-001 0.00000000000000E+000 64 31 4.91528588058071E-001 0.00000000000000E+000 64 32 5.14831956233275E-001 0.00000000000000E+000 **Si_k.data** Information on k-points. :: # k-point distribution # ik: k-point index # kx,ky,kz: Reduced coordinate of k-points # wk: Weight of k-point # 1:ik[none] 2:kx[none] 3:ky[none] 4:kz[none] 5:wk[none] 1 -3.75000000000000E-001 -3.75000000000000E-001 -3.75000000000000E-001 1.00000000000000E+000 2 -3.75000000000000E-001 -3.75000000000000E-001 -1.25000000000000E-001 1.00000000000000E+000 3 -3.75000000000000E-001 -3.75000000000000E-001 1.25000000000000E-001 1.00000000000000E+000 4 -3.75000000000000E-001 -3.75000000000000E-001 3.75000000000000E-001 1.00000000000000E+000 5 -3.75000000000000E-001 -1.25000000000000E-001 -3.75000000000000E-001 1.00000000000000E+000 ... 60 3.75000000000000E-001 1.25000000000000E-001 3.75000000000000E-001 1.00000000000000E+000 61 3.75000000000000E-001 3.75000000000000E-001 -3.75000000000000E-001 1.00000000000000E+000 62 3.75000000000000E-001 3.75000000000000E-001 -1.25000000000000E-001 1.00000000000000E+000 63 3.75000000000000E-001 3.75000000000000E-001 1.25000000000000E-001 1.00000000000000E+000 64 3.75000000000000E-001 3.75000000000000E-001 3.75000000000000E-001 1.00000000000000E+000 **Si_rt.data** Results of time evolution calculation. *Ac_ext_x,y,z* are applied vector potential. For transverse calculation specified by trans_longi = 'tr', *Ac_tot_x,y,z* are equal to *Ac_ext_x,y,z*. For longitudinal calculation specified by ``trans_longi = 'lo'``, *Ac_tot_x,y,z* are the sum of *Ac_ext_x,y,z* and the induced polarization. The same relation holds for electric fields of *E_ext_x,y,z* and *E_tot_x,y,z*. *Jm_x,y,z* are macroscopic current. *Eall* and *Eall-Eall0* are total energy and electronic excitation energy, respectively. ''Tion' is the kinetic energy of atoms. *Temperature_ion* is the temperature estimated from the atomic motion. :: # Real time calculation # Ac_ext: External vector potential field # E_ext: External electric field # Ac_tot: Total vector potential field # E_tot: Total electric field # Jm: Matter current density # Eall: Total energy # Eall0: Initial energy # Tion: Kinetic energy of ions # 1:Time[a.u.] 2:Ac_ext_x[a.u.] 3:Ac_ext_y[a.u.] 4:Ac_ext_z[a.u.] 5:E_ext_x[a.u.] 6:E_ext_y[a.u.] 7:E_ext_z[a.u.] 8:Ac_tot_x[a.u.] 9:Ac_tot_y[a.u.] 10:Ac_tot_z[a.u.] 11:E_tot_x[a.u.] 12:E_tot_y[a.u.] 13:E_tot_z[a.u.] 14:Jm_x[a.u.] 15:Jm_y[a.u.] 16:Jm_z[a.u.] 17:Eall[a.u.] 18:Eall-Eall0[a.u.] 19:Tion[a.u.] 20:Temperature_ion[K] 0.00000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 3.77331308204139E-008 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 3.77331308204139E-008 -8.70901886780464E-013 1.04477060852801E-012 2.05240902737187E-014 -3.12658878806237E+001 -1.13686837721616E-013 0.00000000000000E+000 0.00000000000000E+000 0.16000000 0.00000000000000E+000 0.00000000000000E+000 -1.20746018625324E-008 0.00000000000000E+000 0.00000000000000E+000 2.89492697662796E-007 0.00000000000000E+000 0.00000000000000E+000 -1.20746018625324E-008 0.00000000000000E+000 0.00000000000000E+000 2.89492697662796E-007 -7.85903272323908E-013 1.25651122959738E-012 -3.36584280927329E-010 -3.12658878806202E+001 3.36797256750287E-012 0.00000000000000E+000 0.00000000000000E+000 0.32000000 0.00000000000000E+000 0.00000000000000E+000 -9.26376632520948E-008 0.00000000000000E+000 0.00000000000000E+000 9.25330085901344E-007 0.00000000000000E+000 0.00000000000000E+000 -9.26376632520948E-008 0.00000000000000E+000 0.00000000000000E+000 9.25330085901344E-007 -6.72570067469639E-013 1.44513383464745E-012 -2.58015152519122E-009 -3.12658878805859E+001 3.76836339910369E-011 0.00000000000000E+000 0.00000000000000E+000 0.48000000 0.00000000000000E+000 0.00000000000000E+000 -3.08180229350963E-007 0.00000000000000E+000 0.00000000000000E+000 1.97661471359977E-006 0.00000000000000E+000 0.00000000000000E+000 -3.08180229350963E-007 0.00000000000000E+000 0.00000000000000E+000 1.97661471359977E-006 -5.16188379881674E-013 1.65999923818627E-012 -8.55700433990977E-009 -3.12658878804485E+001 1.75052861095537E-010 0.00000000000000E+000 0.00000000000000E+000 0.64000000 0.00000000000000E+000 0.00000000000000E+000 -7.25154371604021E-007 0.00000000000000E+000 0.00000000000000E+000 3.44304368307922E-006 0.00000000000000E+000 0.00000000000000E+000 -7.25154371604021E-007 0.00000000000000E+000 0.00000000000000E+000 3.44304368307922E-006 -3.31706377656679E-013 1.88556925268305E-012 -2.00507097518009E-008 -3.12658878800854E+001 5.38197042487809E-010 0.00000000000000E+000 0.00000000000000E+000 ... 479.36000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -5.55195781926435E-013 -3.96119870066348E-012 8.12847438945111E-005 -5.27018855348676E+000 2.59956993271368E+001 0.00000000000000E+000 0.00000000000000E+000 479.52000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -3.02810565250972E-013 -3.64518553366057E-012 5.63898060743298E-005 -5.27028126908996E+000 2.59956066115336E+001 0.00000000000000E+000 0.00000000000000E+000 479.68000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -7.16671188540074E-014 -3.26226560875438E-012 2.80138979239849E-005 -5.27037369552727E+000 2.59955141850963E+001 0.00000000000000E+000 0.00000000000000E+000 479.84000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 1.25642145342234E-013 -2.83144546563755E-012 -1.41212701168313E-006 -5.27046577678837E+000 2.59954221038352E+001 0.00000000000000E+000 0.00000000000000E+000 480.00000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 2.93865192596554E-013 -2.36028795847010E-012 -2.94243971611215E-005 -5.27055732569162E+000 2.59953305549319E+001 0.00000000000000E+000 0.00000000000000E+000 **Si_force.data** Force acting on each atom during time evolution. :: # Force calculatio # force: Force # time[a.u.] force[a.u.] 0.000000E+000 -0.663696E-008 0.381594E-008 0.147786E-006 0.280111E-008 0.228130E-009 0.152372E-006 0.190603E-008 0.347020E-008 0.144454E-006 -0.255639E-008 0.162309E-008 0.157887E-006 -0.715186E-009 -0.607023E-008 0.150657E-006 -0.125193E-008 0.434347E-008 0.154377E-006 -0.932342E-008 -0.112253E-007 0.150918E-006 -0.505492E-008 -0.289610E-008 0.158433E-006 0.160000E+001 -0.131252E-008 0.164755E-008 0.796703E-004 -0.945892E-009 -0.762583E-009 0.796709E-004 0.139448E-008 0.172324E-008 0.796683E-004 -0.452537E-009 -0.106913E-008 0.796682E-004 0.302666E-009 0.384512E-009 0.796698E-004 -0.295296E-009 -0.194915E-008 0.796704E-004 0.357413E-009 -0.849344E-009 0.796713E-004 -0.289642E-009 0.582711E-009 0.796703E-004 0.320000E+001 0.611719E-008 -0.279866E-008 0.299229E-003 -0.482069E-008 -0.108492E-008 0.299224E-003 -0.113705E-008 -0.180657E-008 0.299232E-003 0.249663E-008 -0.365775E-008 0.299214E-003 0.894693E-009 0.822775E-008 0.299225E-003 0.674776E-009 -0.800682E-008 0.299222E-003 0.122632E-007 0.130955E-007 0.299227E-003 0.634943E-008 0.330482E-008 0.299216E-003 0.480000E+001 0.632236E-008 -0.360316E-008 0.625960E-003 -0.380678E-008 -0.149542E-008 0.625956E-003 -0.195847E-008 -0.271155E-008 0.625964E-003 0.224789E-008 -0.225876E-008 0.625950E-003 -0.416507E-009 0.737796E-008 0.625958E-003 0.788341E-009 -0.633137E-008 0.625955E-003 0.936024E-008 0.128155E-007 0.625960E-003 0.491902E-008 0.331005E-008 0.625950E-003 0.640000E+001 0.402103E-009 0.205061E-010 0.102016E-002 0.136956E-008 -0.668489E-009 0.102016E-002 -0.133472E-009 -0.624741E-009 0.102016E-002 -0.272159E-009 0.161549E-008 0.102016E-002 -0.993343E-009 -0.896691E-009 0.102016E-002 0.819106E-009 0.130318E-008 0.102016E-002 -0.262966E-008 -0.314962E-009 0.102016E-002 -0.140244E-008 0.427951E-009 0.102016E-002 ... 0.473600E+003 0.597367E-009 0.387050E-009 -0.348389E-002 0.605905E-009 -0.465705E-009 -0.348389E-002 -0.641806E-009 -0.394485E-009 -0.348389E-002 -0.964505E-009 0.116781E-008 -0.348389E-002 -0.589312E-009 0.786468E-009 -0.348389E-002 -0.237343E-009 0.194589E-009 -0.348389E-002 -0.120897E-008 -0.693231E-009 -0.348389E-002 0.229921E-009 -0.733008E-009 -0.348389E-002 0.475200E+003 -0.168428E-009 -0.115247E-008 0.473981E-002 -0.265453E-009 -0.760895E-010 0.473981E-002 0.442756E-009 -0.106813E-009 0.473981E-002 0.875680E-009 0.104699E-008 0.473981E-002 -0.870002E-009 0.234294E-009 0.473982E-002 0.694922E-009 0.543690E-009 0.473981E-002 0.694120E-009 0.135771E-009 0.473981E-002 -0.233819E-009 0.444395E-009 0.473981E-002 0.476800E+003 0.102600E-008 0.751831E-009 -0.162791E-002 0.826826E-009 0.101675E-008 -0.162791E-002 0.656143E-009 -0.777523E-009 -0.162791E-002 0.379311E-010 0.158618E-008 -0.162791E-002 -0.375430E-009 0.123075E-008 -0.162791E-002 0.363301E-009 -0.428326E-009 -0.162792E-002 0.297257E-009 -0.713355E-009 -0.162791E-002 -0.253648E-010 0.813094E-010 -0.162791E-002 0.478400E+003 0.101572E-008 0.116909E-008 -0.663462E-002 -0.435127E-010 -0.480843E-009 -0.663462E-002 0.122317E-008 0.313588E-009 -0.663462E-002 -0.951952E-010 -0.156395E-008 -0.663462E-002 0.528331E-009 -0.200449E-009 -0.663462E-002 -0.593208E-009 0.104932E-009 -0.663462E-002 0.293176E-009 -0.106265E-008 -0.663462E-002 -0.144531E-009 0.662959E-010 -0.663462E-002 0.480000E+003 0.378024E-009 -0.244626E-009 0.169685E-002 0.792446E-009 -0.137457E-008 0.169684E-002 -0.267886E-009 0.231108E-009 0.169684E-002 -0.568326E-009 0.242847E-011 0.169684E-002 0.803904E-010 -0.153003E-009 0.169684E-002 -0.698906E-009 -0.493838E-009 0.169684E-002 -0.201697E-009 -0.515273E-009 0.169684E-002 -0.182781E-009 -0.848598E-009 0.169684E-002 **Si_lr_data** Fourier transformations of various quantities. :: # Fourier-transform spectra # Jm: Matter current density # E_ext: External electric field # E_tot: Total electric potential field # 1:Frequency[a.u.] 2:Re(Jm_x)[a.u.] 3:Re(Jm_y)[a.u.] 4:Re(Jm_z)[a.u.] 5:Im(Jm_x)[a.u.] 6:Im(Jm_y)[a.u.] 7:Im(Jm_z)[a.u.] 8:Re(E_ext_x)[a.u.] 9:Re(E_ext_y)[a.u.] 10:Re(E_ext_z)[a.u.] 11:Im(E_ext_x)[a.u.] 12:Im(E_ext_y)[a.u.] 13:Im(E_ext_z)[a.u.] 14:Re(E_tot_x)[a.u.] 15:Re(E_tot_y)[a.u.] 16:Re(E_tot_z)[a.u.] 17:Im(E_tot_x)[a.u.] 18:Im(E_tot_y)[a.u.] 19:Im(E_tot_z)[a.u.] 0.00036749 -2.84895463680408E-013 5.15173051622877E-014 -3.52107345483375E-005 4.48903005613079E-012 -2.32288812334531E-012 6.75568020279512E-004 0.00000000000000E+000 0.00000000000000E+000 4.97953467812365E-004 0.00000000000000E+000 0.00000000000000E+000 3.58501823355665E-004 0.00000000000000E+000 0.00000000000000E+000 4.97953467812365E-004 0.00000000000000E+000 0.00000000000000E+000 3.58501823355665E-004 0.00073499 -1.13540774534206E-012 2.07937929182977E-013 -1.40798553922957E-004 8.90861768500183E-012 -4.65722890058464E-012 1.34678502951777E-003 0.00000000000000E+000 0.00000000000000E+000 4.63469055289272E-004 0.00000000000000E+000 0.00000000000000E+000 7.13528955721859E-004 0.00000000000000E+000 0.00000000000000E+000 4.63469055289272E-004 0.00000000000000E+000 0.00000000000000E+000 7.13528955721859E-004 0.00110248 -2.53907962392519E-012 4.74814744878412E-013 -3.16626882537289E-004 1.31903398564115E-011 -7.01379574946040E-012 2.00927257456496E-003 0.00000000000000E+000 0.00000000000000E+000 4.07013867440069E-004 0.00000000000000E+000 0.00000000000000E+000 1.06169736359997E-003 0.00000000000000E+000 0.00000000000000E+000 4.07013867440069E-004 0.00000000000000E+000 0.00000000000000E+000 1.06169736359997E-003 0.00146997 -4.47536487471274E-012 8.61226149017987E-013 -5.62456776380136E-004 1.72677949815665E-011 -9.40201922497097E-012 2.65859850138268E-003 0.00000000000000E+000 0.00000000000000E+000 3.30095592579552E-004 0.00000000000000E+000 0.00000000000000E+000 1.39980301776817E-003 0.00000000000000E+000 0.00000000000000E+000 3.30095592579552E-004 0.00000000000000E+000 0.00000000000000E+000 1.39980301776817E-003 0.00183747 -6.91594776469286E-012 1.37951536625165E-012 -8.77930263458079E-004 2.10775706012377E-011 -1.18293542969418E-011 3.29025303683963E-003 0.00000000000000E+000 0.00000000000000E+000 2.34784059348594E-004 0.00000000000000E+000 0.00000000000000E+000 1.72490861730070E-003 0.00000000000000E+000 0.00000000000000E+000 2.34784059348594E-004 0.00000000000000E+000 0.00000000000000E+000 1.72490861730070E-003 ... 0.36602326 -1.34089639696033E-011 -1.39416295506675E-010 1.78132697555994E-003 -4.82428771517963E-011 2.46762847283247E-012 -1.61143602449332E-004 0.00000000000000E+000 0.00000000000000E+000 4.45170812023321E-006 0.00000000000000E+000 0.00000000000000E+000 -3.65224569772520E-004 0.00000000000000E+000 0.00000000000000E+000 4.45170812023321E-006 0.00000000000000E+000 0.00000000000000E+000 -3.65224569772520E-004 0.36639076 -1.24360432096437E-011 -1.36245370206982E-010 1.73864190682382E-003 -5.21816299182567E-011 -3.50916159867163E-012 -7.77023817604767E-005 0.00000000000000E+000 0.00000000000000E+000 5.11905824950650E-006 0.00000000000000E+000 0.00000000000000E+000 -3.63173718411360E-004 0.00000000000000E+000 0.00000000000000E+000 5.11905824950650E-006 0.00000000000000E+000 0.00000000000000E+000 -3.63173718411360E-004 0.36675825 -1.12274531733429E-011 -1.32788988742883E-010 1.69384196276721E-003 -5.60444962150072E-011 -9.12174813252230E-012 -2.15275586453434E-006 0.00000000000000E+000 0.00000000000000E+000 5.62963567554736E-006 0.00000000000000E+000 0.00000000000000E+000 -3.61035199699344E-004 0.00000000000000E+000 0.00000000000000E+000 5.62963567554736E-006 0.00000000000000E+000 0.00000000000000E+000 -3.61035199699344E-004 0.36712574 -9.79019347225448E-012 -1.29082073143664E-010 1.64792403884542E-003 -5.98140679681705E-011 -1.43564301457731E-011 6.57920339739901E-005 0.00000000000000E+000 0.00000000000000E+000 5.97107609420323E-006 0.00000000000000E+000 0.00000000000000E+000 -3.58835797250056E-004 0.00000000000000E+000 0.00000000000000E+000 5.97107609420323E-006 0.00000000000000E+000 0.00000000000000E+000 -3.58835797250056E-004 0.36749324 -8.13273340472761E-012 -1.25159803753324E-010 1.60180907923576E-003 -6.34737299655122E-011 -1.92028837998549E-011 1.26529960616246E-004 0.00000000000000E+000 0.00000000000000E+000 6.13554270900561E-006 0.00000000000000E+000 0.00000000000000E+000 -3.56603849256161E-004 0.00000000000000E+000 0.00000000000000E+000 6.13554270900561E-006 0.00000000000000E+000 0.00000000000000E+000 -3.56603849256161E-004 **Si_gs_rt_pulse.out** Standard output file. Maxwell + TDDFT multiscale simulation ------------------------------------- .. _exercise-6: Exercise-6: Pulsed-light propagation through a silicon thin film ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In this exercise, we learn the calculation of the propagation of a pulsed light through a thin film of crystalline silicon. We consider a silicon thin film of 53 nm thickness, and an irradiation of a few-cycle, linearly polarized pulsed light normally on the thin film. First, to set up initial orbitals, the ground state calculation is carried out. The pulsed light locates in the vacuum region in front of the thin film. The parameters that characterize the pulsed light such as magnitude and frequency are specified in the input file. The calculation ends when the reflected and transmitted pulses reach the vacuum region. .. _input-files-5: Input files ^^^^^^^^^^^ To run the code, following files are used: +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *Si_gs_rt_multiscale.inp* | input file that contain namelist | | | variables and their values. | +-----------------------------------+-----------------------------------+ | *Si_rps.dat* | pseodupotential file for silicon | +-----------------------------------+-----------------------------------+ | You may download the above two files (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/Si_gs_rt_multiscale_input.zip In the input file *Si_gs_rt_multiscale.inp*, namelists variables are specified. Most of them are mandatory to execute the calculation. This will help you to prepare the input file for other systems that you want to calculate. A complete list of the namelist variables that can be used in the input file can be found in the downloaded file *SALMON/manual/input_variables.md*. :: &calculation calc_mode = 'GS_RT' use_ms_maxwell = 'y' / &control sysname = 'Si' / &system iperiodic = 3 al = 10.26d0, 10.26d0, 10.26d0 nstate = 32 nelec = 32 nelem = 1 natom = 8 / &pseudo izatom(1) = 14 pseudo_file(1) = './Si_rps.dat' lloc_ps(1) = 2 / &functional xc = 'PZ' / &rgrid num_rgrid = 12, 12, 12 / &kgrid num_kgrid = 2, 2, 2 / &tgrid nt = 4000 dt = 0.08 / &propagation propagator = 'middlepoint' / &scf ncg = 5 nscf = 100 / &emfield ae_shape1 = 'Acos2' rlaser_int_wcm2_1 = 1d12 pulse_tw1 = 441.195136248d0 omega1 = 0.05696145187d0 epdir_re1 = 0., 0., 1. / &multiscale fdtddim = '1d' twod_shape = 'periodic' nx_m = 4 ny_m = 1 hx_m = 250d0 nxvacl_m = -2000 nxvacr_m = 256 / &atomic_red_coor 'Si' .0 .0 .0 1 'Si' .25 .25 .25 1 'Si' .5 .0 .5 1 'Si' .0 .5 .5 1 'Si' .5 .5 .0 1 'Si' .75 .25 .75 1 'Si' .25 .75 .75 1 'Si' .75 .75 .25 1 / We present explanations of the namelist variables that appear in the input file below: **&calculation** Mandatory: calc_mode :: &calculation calc_mode = 'GS_RT' use_ms_maxwell = 'y' / ``calc_mode = 'GS_RT'`` indicates that the ground state (GS) and the real time (RT) calculations are carried out sequentially in the present job. ``use_ms_maxwell = 'y'`` indicates the multi-scale Maxwell - TDDFT calculation. See :any:`&calculation in Inputs <&calculation>` for detail. **&control** Mandatory: none :: &control sysname = 'Si' / 'Si' defined by ``sysname = 'C2H2'`` will be used in the filenames of output files. **&system** :: &system iperiodic = 3 al = 10.26d0,10.26d0,10.26d0 isym = 8 crystal_structure = 'diamond' nstate = 32 nelec = 32 nelem = 1 natom = 8 / ``iperiodic = 3`` indicates that three dimensional periodic boundary condition (bulk crystal) is assumed. ``al = 10.26d0, 10.26d0, 10.26d0`` specifies the lattice constans of the unit cell. ``nstate = 32`` indicates the number of Kohn-Sham orbitals to be solved. ``nelec = 32`` indicate the number of valence electrons in the system. ``nelem = 1`` and ``natom = 8`` indicate the number of elements and the number of atoms in the system, respectively. ``isym = 8`` and ``crystal_structure = 'diamond'``, which indicates that the spatial symmetry of the unit cell is used in the calculation. Although the use of the symmetry substantially reduces the computational cost, it should be used very carefully. At present, the spatial symmetry has been implemented only for the case of the diamond structure. See :any:`&system in Inputs <&system>` for more information. **&pseudo** :: &pseudo izatom(1)=14 pseudo_file(1) = './Si_rps.dat' lloc_ps(1)=2 / ``izatom(1) = 14`` indicates the atomic number of the element #1. ``pseudo_file(1) = 'Si_rps.dat'`` indicates the pseudopotential filename of element #1. ``lloc_ps(1) = 2`` indicate the angular momentum of the pseudopotential that will be treated as local.l **&functional** :: &functional xc='PZ' / This indicates that the adiabatic local density approximation with the Perdew-Zunger functional is used. We note that meta-GGA functionals that reasonably reproduce the band gap of various insulators may also be used in the calculation of periodic systems. See :any:`&functional in Inputs <&functional>` for detail. **&rgrid** Mandatory: dl or num_rgrid :: &rgrid num_rgrid = 12,12,12 / ``num_rgrid=12,12,12`` specifies the number of the grids for each Cartesian direction. See :any:`&rgrid in Inputs <&rgrid>` for more information. **&kgrid** Mandatory: none This namelist provides grid spacing of k-space for periodic systems. :: &kgrid num_kgrid = 2,2,2 / **&tgrid** :: &tgrid nt=4000 dt=0.08 / ``dt=0.08`` specifies the time step of the time evolution calculation. ``nt=4000`` specifies the number of time steps in the calculation. **&propagation** :: &propagation propagator='middlepoint' / ``propagator = 'middlepoint'`` indicates that Hamiltonian at midpoint of two-times is used. See :any:`&propagation in Inputs <&propagation>` for more information. **&scf** Mandatory: nscf This namelists specify parameters related to the self-consistent field calculation. :: &scf ncg = 5 nscf = 120 / ``ncg = 5`` is the number of conjugate-gradient iterations in solving the Kohn-Sham equation. Usually this value should be 4 or 5. ``nscf = 120`` is the number of scf iterations. **&emfield** :: &emfield ae_shape1 = 'Acos2' rlaser_int_wcm2_1 = 1d12 pulse_tw1 = 441.195136248d0 omega1 = 0.05696145187d0 epdir_re1 = 0.,0.,1. / This namelist specifies the pulsed electric field applied to the system ``ae_shape1 = 'Acos2'`` specifies the envelope of the pulsed electric field, cos^2 envelope for the vector potential. ``epdir_re1 = 0.,0.,1.`` specify the real part of the unit polarization vector of the pulsed electric field. Specifying only the real part, it describes a linearly polarized pulse. ``laser_int_wcm2_1 = 1d12`` specifies the maximum intensity of the applied electric field in unit of W/cm^2. ``omega1=0.05696145187d0`` specifies the average photon energy (frequency multiplied with hbar). ``pulse_tw1=441.195136248d0`` specifies the pulse duration. Note that it is not the FWHM but a full duration of the cos^2 envelope. See :any:`&emfield in Inputs <&emfield>` for detail. **&multiscale** This namelist specifies information necessary for Maxwell - TDDFT multiscale calculations. :: &multiscale fdtddim = '1D' twod_shape = 'periodic' nx_m = 4 ny_m = 1 hX_m = 250d0 nxvacl_m = -2000 nxvacr_m = 256 / ``fdtddim`` specifies the spatial dimension of the macro system. ``fdtddim='1D'`` indicates that one-dimensional equation is solved for the macroscopic vector potential. ``nx_m = 4`` specifies the number of the macroscopic grid points in for x-direction in the spatial region where the material exists. ``hx_m = 250d0`` specifies the grid spacing of the macroscopic grid in x-direction. ``nxvacl_m = -2000`` and ``nxvacr_m = 256`` indicate the number of grid points in the vacuum region, ``nxvacl_m`` for the left and ``nxvacr_m`` for the right from the surface of the material. **&atomic_red_coor** Mandatory: atomic_coor or atomic_red_coor (they may be provided as a separate file) :: &atomic_red_coor 'Si' .0 .0 .0 1 'Si' .25 .25 .25 1 'Si' .5 .0 .5 1 'Si' .0 .5 .5 1 'Si' .5 .5 .0 1 'Si' .75 .25 .75 1 'Si' .25 .75 .75 1 'Si' .75 .75 .25 1 / Cartesian coordinates of atoms are specified in a reduced coordinate system. First column indicates the element, next three columns specify reduced Cartesian coordinates of the atoms, and the last column labels the element. .. _output-files-5: Output files ^^^^^^^^^^^^ After the calculation, new directory *multiscale/* is created, then, following output files are created in the directory, +-----------------------------------+-----------------------------------+ | file name | description | +-----------------------------------+-----------------------------------+ | *Si_gs_info.data* | results of the ground state as | | | well as input parameters | +-----------------------------------+-----------------------------------+ | *Si_eigen.data* | orbital energies in the ground | | | state calculation | +-----------------------------------+-----------------------------------+ | *Si_k.data* | information on k-points | +-----------------------------------+-----------------------------------+ | *RT_Ac/Si_Ac_xxxxxx.data* | various quantities at a time as | | | functions of macroscopic position | +-----------------------------------+-----------------------------------+ | *RT_Ac/Si_Ac_vac.data* | vector potential at vacuum | | | position adjacent to the medium | +-----------------------------------+-----------------------------------+ | *Mxxxxxx/Si_Ac_M.data* | various quantities at a | | | macroscopic point as functions of | | | time | +-----------------------------------+-----------------------------------+ | *Si_gs_rt_multiscale.out* | standard output file | +-----------------------------------+-----------------------------------+ | You may download the above files (zipped file) from: | https://salmon-tddft.jp/webmanual/v_1_1_0/exercise_zip_files/Si_gs_rt_multiscale_output.zip Explanations of the output files are described below: **Si_gs_info.data** Results of the ground state as well as input parameters are provided. :: #--------------------------------------------------------- #grid information----------------------------------------- #aL = 10.2600000000000 10.2600000000000 10.2600000000000 #al(1),al(2),al(3) = 10.2600000000000 10.2600000000000 10.2600000000000 #aLx,aLy,aLz = 10.2600000000000 10.2600000000000 10.2600000000000 #bLx,bLy,bLz = 0.612396228769940 0.612396228769940 0.612396228769940 #Nd = 4 #NLx,NLy,NLz= 12 12 12 #NL = 1728 #Hx,Hy,Hz = 0.855000000000000 0.855000000000000 0.855000000000000 #(pi/max(Hx,Hy,Hz))**2 = 13.5010490764192 #(pi/Hx)**2+(pi/Hy)**2+(pi/Hz)**2 = 40.5031472292576 #Hxyz = 0.625026375000000 #NKx,NKy,NKz= 2 2 2 #NKxyz = 8 #Sym= 1 #NK = 8 #NEwald, aEwald = 4 0.500000000000000 #--------------------------------------------------------- #GS calc. option------------------------------------------ #FSset_option =n #Ncg= 5 #Nmemory_MB,alpha_MB = 8 0.750000000000000 #NFSset_start,NFSset_every = 75 25 #Nscf= 100 #Nscf_conv= 100 #NI,NE= 8 1 #Zatom= 14 #Lref= 2 #i,Kion(ia)(Rion(j,a),j=1,3) # 1 1 # 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 # 2 1 # 2.56500000000000 2.56500000000000 2.56500000000000 # 3 1 # 5.13000000000000 0.000000000000000E+000 5.13000000000000 # 4 1 # 0.000000000000000E+000 5.13000000000000 5.13000000000000 # 5 1 # 5.13000000000000 5.13000000000000 0.000000000000000E+000 # 6 1 # 7.69500000000000 2.56500000000000 7.69500000000000 # 7 1 # 2.56500000000000 7.69500000000000 7.69500000000000 # 8 1 # 7.69500000000000 7.69500000000000 2.56500000000000 #--------------------------------------------------------- #GS information------------------------------------------- #NB,Nelec= 32 32 #Eall = -31.2444435912435 #ddns(iter = Nscf_conv) 1.054470043491702E-009 #ddns_abs_1e(iter = Nscf_conv) 7.414743076744689E-010 #esp_var_ave(iter = Nscf_conv) 1.020334316849951E-008 #esp_var_max(iter = Nscf_conv) 2.402374610033353E-008 #NBoccmax is 16 #--------------------------------------------------------- #band information----------------------------------------- #Bottom of VB -0.171685135011666 #Top of VB 0.200444750626413 #Bottom of CB 0.279085896060740 #Top of CB 0.467391510426397 #Fundamental gap 7.864114543432713E-002 #Fundamental gap[eV] 2.13995139310074 #BG between same k-point 7.864114544171730E-002 #BG between same k-point[eV] 2.13995139330183 #Physicaly upper bound of CB for DOS 0.467391509327423 #Physicaly upper bound of CB for eps(omega) 0.639076644315190 #--------------------------------------------------------- #iter total-energy ddns/nelec esp_var_ave esp_var_max 1 -0.2036656319E+02 0.7386703002E+00 0.1069029083E+00 0.1685663917E+00 2 -0.2528602134E+02 0.4434674022E+00 0.1251761861E+00 0.1947159558E+00 3 -0.2862371415E+02 0.2037034214E+00 0.5065455837E-01 0.8653325118E-01 4 -0.3011102231E+02 0.1582114006E+00 0.4920903464E-01 0.1181905324E+00 5 -0.3087795790E+02 0.1077328223E+00 0.1964285309E-01 0.4585050374E-01 ... 96 -0.3124444359E+02 0.4299999378E-09 0.1045606891E-07 0.2402425601E-07 97 -0.3124444359E+02 0.3271696693E-09 0.1042233851E-07 0.2402417900E-07 98 -0.3124444359E+02 0.2672131350E-09 0.1041933599E-07 0.3916492026E-07 99 -0.3124444359E+02 0.7129545698E-09 0.1020262421E-07 0.2402357654E-07 100 -0.3124444359E+02 0.7414743077E-09 0.1020334317E-07 0.2402374610E-07 **Si_eigen.data** Orbital energies in the ground state calculation. :: # Ground state eigenenergies # ik: k-point index # ib: Band index # energy: Eigenenergy # occup: Occupation # 1:ik[none] 2:ib[none] 3:energy[a.u.] 4:occup[none] 1 1 -1.71685134987767E-001 2.00000000000000E+000 1 2 -9.95580252948176E-002 2.00000000000000E+000 1 3 -9.95580233898604E-002 2.00000000000000E+000 1 4 -9.95580220480095E-002 2.00000000000000E+000 1 5 2.73787456875120E-003 2.00000000000000E+000 ... 8 28 4.34674205363501E-001 0.00000000000000E+000 8 29 4.40615204659137E-001 0.00000000000000E+000 8 30 4.40615205419465E-001 0.00000000000000E+000 8 31 4.40615206907897E-001 0.00000000000000E+000 8 32 4.67391509348806E-001 0.00000000000000E+000 **Si_k.data** Information on k-points. Note that diamond symmetry is used to reduce the k-point in this calculation. :: # k-point distribution # ik: k-point index # kx,ky,kz: Reduced coordinate of k-points # wk: Weight of k-point # 1:ik[none] 2:kx[none] 3:ky[none] 4:kz[none] 5:wk[none] 1 -2.50000000000000E-001 -2.50000000000000E-001 -2.50000000000000E-001 1.00000000000000E+000 2 -2.50000000000000E-001 -2.50000000000000E-001 2.50000000000000E-001 1.00000000000000E+000 3 -2.50000000000000E-001 2.50000000000000E-001 -2.50000000000000E-001 1.00000000000000E+000 4 -2.50000000000000E-001 2.50000000000000E-001 2.50000000000000E-001 1.00000000000000E+000 5 2.50000000000000E-001 -2.50000000000000E-001 -2.50000000000000E-001 1.00000000000000E+000 6 2.50000000000000E-001 -2.50000000000000E-001 2.50000000000000E-001 1.00000000000000E+000 7 2.50000000000000E-001 2.50000000000000E-001 -2.50000000000000E-001 1.00000000000000E+000 8 2.50000000000000E-001 2.50000000000000E-001 2.50000000000000E-001 1.00000000000000E+000 **RT_Ac/Si_Ac_000000.data** The number in the file name specifies the iteration number. Various quantities at a time are shown as function of macroscopic position. - column 1-3: grid number of macroscopic coordinate in 3D format. - column 4-6: macroscopic vector potential - column 7-9: macroscopic electric field - column 10-12: macroscopic magnetic field - column 13-15: macroscopic current - column 16: electronic excitation energy per unit cell - column 17: energy absorbed by electrons per unit cell - column 18: energy of macroscopic electromagnetic fields per unit cell :: # Macroscopic field distribution # IX,IY,IZ: Coordinate # Ac: Vector potential field # E: Electric field # B: Magnetic field # Jm: Matter current density # Eex: Electron excitation energy # Eabs: Absorbed energy # Eemf: Total EM field energy # 1:Ix[none] 2:Iy[none] 3:Iz[none] 4:Ac_x[a.u.] 5:Ac_y[a.u.] 6:Ac_z[a.u.] 7:E_x[a.u.] 8:E_y[a.u.] 9:E_z[a.u.] 10:B_x[a.u.] 11:B_y[a.u.] 12:B_z[a.u.] 13:Jm_x[a.u.] 14:Jm_y[a.u.] 15:Jm_z[a.u.] 16:Eex[a.u./unitcell] 17:Eabs[a.u./unitcell] 18:Eemf[a.u./unitcell] -2000 1 1 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -1999 1 1 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -1998 1 1 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -1997 1 1 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -1996 1 1 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 ... 252 1 1 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 253 1 1 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 254 1 1 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 255 1 1 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 256 1 1 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 **RT_Ac/Si_Ac_vac.data** Vector potentials at vacuum points adjacent to the medium are shown, L for left and R for right adjacent point. :: # Ac vacuum region # Data of Ac field at the end of media # L: 0 1 1 # R: 5 1 1 # 1:Time[a.u.] 2:Ac_x(L)[a.u.] 3:Ac_y(L)[a.u.] 4:Ac_z(L)[a.u.] 5:Ac_x(R)[a.u.] 6:Ac_y(R)[a.u.] 7:Ac_z(R)[a.u.] 0.00000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.08000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.16000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.24000000 0.00000000000000E+000 1.02802304891111E-015 3.34045640443765E-016 0.00000000000000E+000 1.02802304891111E-015 3.34045640443765E-016 0.32000000 0.00000000000000E+000 5.19696825069140E-015 1.73169501167652E-015 0.00000000000000E+000 5.19696825069140E-015 1.73169724492077E-015 ... 319.68000000 0.00000000000000E+000 -8.56815797183038E-007 -1.74158413235687E-001 0.00000000000000E+000 -8.00468477308030E-007 -1.58038091464266E-001 319.76000000 0.00000000000000E+000 -8.57513903130219E-007 -1.74393964495627E-001 0.00000000000000E+000 -8.01174071107012E-007 -1.58187516982663E-001 319.84000000 0.00000000000000E+000 -8.58202516138042E-007 -1.74627725814573E-001 0.00000000000000E+000 -8.01876269144167E-007 -1.58336335855095E-001 319.92000000 0.00000000000000E+000 -8.58881726038604E-007 -1.74859695029779E-001 0.00000000000000E+000 -8.02575101929425E-007 -1.58484539522173E-001 320.00000000 0.00000000000000E+000 -8.59551627002296E-007 -1.75089870177989E-001 0.00000000000000E+000 -8.03270602482416E-007 -1.58632119495344E-001 **M000001/Si_Ac_M.data** The number in the file name specifies the macroscopic grid point in a medium. Various quantities at a macroscopic point are shown as functions of time. :: # Local variable at macro point # Macropoint: 1 1 1 # Jm: Matter current density # Ac: External vector potential field # 1:Time[a.u.] 2:Ac_x[a.u.] 3:Ac_y[a.u.] 4:Ac_z[a.u.] 5:Jm_x[a.u.] 6:Jm_y[a.u.] 7:Jm_z[a.u.] 0.00000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 0.08000000 0.00000000000000E+000 0.00000000000000E+000 0.00000000000000E+000 -2.75496322261169E-012 -6.64693329538576E-012 -2.15985341184321E-012 0.16000000 2.21567288859314E-013 5.34578094327944E-013 1.73705718053823E-013 -2.44154670033013E-012 -7.05287750131598E-012 -2.56975702246339E-012 0.24000000 6.39495414253759E-013 1.63535423011393E-012 5.53749512919215E-013 -2.13170597168112E-012 -7.46016650418711E-012 -2.97426987823802E-012 0.32000000 1.22886550624652E-012 3.33297163342029E-012 1.17193467844178E-012 -1.81810297340216E-012 -7.87600103950396E-012 -3.35839167619253E-012 ... 319.68000000 1.23027707032365E-003 -8.70482807641121E-007 -1.71017066989709E-001 1.02881666841023E-007 4.92374979404618E-010 -3.32578810347408E-005 319.76000000 1.23227860920852E-003 -8.70992162244069E-007 -1.71172549338950E-001 9.87865048046008E-008 4.85608114795546E-010 -3.45948031169888E-005 319.84000000 1.23427220321126E-003 -8.71495026996183E-007 -1.71326503499639E-001 9.45989194632210E-008 4.78870087348624E-010 -3.59262231464884E-005 319.92000000 1.23625818911749E-003 -8.71991570086865E-007 -1.71478932689850E-001 9.03230551511057E-008 4.72163059159496E-010 -3.72519512786483E-005 320.00000000 1.23823691081260E-003 -8.72481961985393E-007 -1.71629840326064E-001 8.59631416251532E-008 4.65489301170927E-010 -3.85718005737764E-005 **Si_gs_rt_multiscale.out** Standard output file.