SALMON (Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience)

Publications using SALMON

Published papers that use SALMON will be useful to know what SALMON can do. We list papers that use SALMON and its former programs including GCEED developed in Institute of Molecular Science and ARTED developed in University of Tsukuba. If you publish a paper using SALMON and the paper does not appear here, please let us know of it.

Contents

  1. 2024
  2. 2023
  3. 2022
  4. 2021
  5. 2020
  6. 2019
  7. 2018
  8. 2017
  9. 2016
  10. 2015
  11. 2014
  12. 2013
  13. 2012
  14. 2011
  15. 2010
  16. 2009
  17. 2007
  18. 2005
  19. 2004
  20. 2003
  21. 2002
  22. 2001
  23. 2000
  24. 1999
  25. 1997
  26. 1996

2024

  • A. Mathew, S. Kruk, S. Yamada, K. Yabana, and A. Kheifets
    First-principles simulations of high-order harmonics generation in thin films of wide bandgap materials [Invited]
    J. Opt. Soc. Am. B 41, 1665-1670 (2024)
    https://doi.org/10.1364/JOSAB.512444

2023

  • K. Iida, T. Takeuchi, R. Katsumi, and T. Yatsui
    Variations in the Photoexcitation Mechanism of an Adsorbed Molecule on a Gold Nanocluster Governed by Interfacial Contact
    J. Phys. Chem. A 127, 7718 (2023)
    https://doi.org/10.1021/acs.jpca.3c03775
  • Shunsuke Yamada, Kazuhiro Yabana, and Tomohito Otobe
    Subcycle control of valley-selective excitations via the dynamical Franz-Keldysh effect in a WSe2 monolayer
    Phys. Rev. B 108, 035404 (2023).
    https://doi.org/10.1103/PhysRevB.108.035404
  • A. Hashmi, S. Yamada, K. Yabana, and T. Otobe
    Enhancement of valley-selective excitation by a linearly polarized two-color laser pulse
    Phys. Rev. B 107, 235403 (2023)
    https://doi.org/10.1103/PhysRevB.107.235403
  • S. Yamada, T. Otobe, D. Freeman, A. Kheifets, and K. Yabana
    Propagation effects in high-harmonic generation from dielectric thin films
    Phys. Rev. B. 107, 035132 (2023)
    https://doi.org/10.1103/PhysRevB.107.035132

2022

  • A. Yamada
    Computational Analyses of Plasmonics of a Silver Nanoparticle in a Vacuum and in a Water Solution by Classical Electronic and Molecular Dynamics Simulations
    J. Phys. Chem. A 126, 4762 (2022)
    https://doi.org/10.1021/acs.jpca.2c02811
  • K. Iida
    Role of Hydration in Photoexcited Electron Transfer between a Gold Nanocluster and a Water Molecule
    J. Phys. Chem. C 126, 7492 (2022)
    https://pubs.acs.org/doi/10.1021/acs.jpcc.1c10756
  • K. Iida
    Atomic-Scale Picture of the Electric Double Layer around a Heterogeneous Solid–Liquid Interface Based on 3D-RISM-SCF Theory
    J. Phys. Chem. C 126, 9466 (2022)
    https://pubs.acs.org/doi/10.1021/acs.jpcc.2c00872
  • M. Tani, K. Sasaki, Y. Shinohara, and K. L. Ishikawa
    Enhanced energy deposition and carrier generation in silicon induced by two-color intense femtosecond laser pulses
    Phys. Rev. B 106, 195141 (2022)
    https://doi.org/10.1103/PhysRevB.106.195141
  • D. Freeman, S. Yamada, A. Yamada, A. Kheifets, and K. Yabana
    High order harmonic generation in semiconductors driven at near- and mid-IR wavelengths
    Phys. Rev. B 106, 075202 (2022)
    https://doi.org/10.1103/PhysRevB.106.075202
  • A. Hashmi, S. Yamada, A. Yamada, K. Yabana, and T. Otobe
    Nonlinear dynamics of electromagnetic field and valley polarization in WSe2 monolayer
    Appl. Phys. Lett. 120, 051108 (2022)
    https://doi.org/10.1063/5.0077235
  • A. Hashmi, S. Yamada, A. Yamada, K. Yabana, and T. Otobe
    Valley polarization control in WSe2 monolayer by a single-cycle laser pulse
    Phys. Rev. B 105, 115403 (2022)
    https://doi.org/10.1103/PhysRevB.105.115403
  • D. Hui, H. Alqattan, S. Yamada, V. Pervak, K. Yabana, and M. Hassan
    Attosecond electron motion control in dielectric
    Nature Photonics 16, 33 (2022)
    https://doi.org/10.1038/s41566-021-00918-4
  • Y. Hirokawa, A. Yamada, S. Yamada, M. Noda, M. Uemoto, T. Boku, and K. Yabana
    Large-scale ab initio simulation of light-matter interaction at the atomic scale in Fugaku
    Int. J. High Perform. Comput. Appl. 36, 182 (2022)
    https://doi.org/10.1177/10943420211065723
  • G. Duchateau, A. Yamada, and K. Yabana
    Electron dynamics in alpha-quartz induced by two-color 10-femtosecond laser pulses
    Phys. Rev. B 105, 165128 (2022)
    https://doi.org/10.1103/PhysRevB.105.165128

2021

  • A. Yamada
    Classical electronic and molecular dynamics simulation for optical response of metal system
    J. Chem. Phys. 155, 174118 (2021)
    https://doi.org/10.1063/5.0067144

2020

  • A. Yamada
    Multiscale simulation of terahertz radiation process in benzimidazole crystal by impulsive stimulated Raman scattering
    J. Chem. Phys. 153, 244506 (2020)
    https://doi.org/10.1063/5.0033308
  • [Multiscale][Ehrenfest MD][Coherent Phonon]
    A.Yamada , K.Yabana
    Modulation of the probe signal in coherent phonon detection revisited: Analytical and first-principles computational analyses  
    Phys. Rev. B 101, 214313 
    DOI:https://doi.org/10.1103/PhysRevB.101.214313
  • [Nonlinear optics][Nanostructure][Silver-TiO2]
    K. Iida, M. Noda
    Electron transfer governed by light-matter interaction at meta-semiconductor interface 
    npj Computational Materials 6, 5 (2020).
    doi.org/10.1038/s41524-019-0269-x
  • [Attosecond][Solid][SiC]
    S. Yamada, K. Yabana
    Symmetry properties of attosecond transient absorption spectroscopy in crystalline dielectrics
    Phys. Rev. B 101, 165128, 2020
    DOI:org/10.1103/PhysRevB.101.165128
  • [Attosecond][Solid][Diamond]
    M. Lucchini, S.A. Sato, F. Schlaepfer, K. Yabana, L. Gallmann, A. Rubio, U. Keller
    Attosecond timing of the dynamical Franz-Keldysh effect
    J.Phys.:Photonics 2, Number 2, 2020
    doi.org/10.1088/2515-7647/ab70cb
  • [Multiscale][Polarization model]
    A. Yamada
    Multiscale Coupled Maxwell’s Equations and Polarizable Molecular Dynamics Simulation Based on Charge Response Kernel Model
    J. Chem. Phys., 152, 094110 (2020).
    DOI: 10.1063/1.5143742

 

2019

  • M. Kozák, T. Otobe, M. Zukerstein, F. Trojánek, and P. Malý
    Anisotropy and polarization dependence of multiphoton charge carrier generation rate in diamond
    Phys. Rev. B 99, 104305 (2019)
    https://doi.org/10.1103/PhysRevB.99.104305
  • [Solid][Nonlinear optics]
    M. Uemoto, Y. Kuwabara, S.A. Sato, and K. Yabana
    Nonlinear polarization evolution using time-dependent density functional theory
    J. Chem. Phys., 150, 094101 (2019).
    https://aip.scitation.org/doi/10.1063/1.5068711
  • [Molecule, solid][C2H2, Si][Code paper]
    M. Noda, S.A. Sato, Y. Hirokawa, M. Uemoto, T. Takeuchi, S. Yamada, A. Yamada, Y Shinohara, M. Yamaguchi, K. Iida, I. Floss, T. Otobe, K.-M. Lee, K. Ishimura, T. Boku, G.F. Bertsch, K. Nobusada, K. Yabana
    SALMON: Scalable Ab-initio Light–Matter simulator for Optics and Nanoscience
    Computer Physics Communications. Volume 235, 356 (2019).
    https://doi.org/10.1016/j.cpc.2018.09.018
  • [Solid][SiO2, Si][Nonlinear excitation]
    A. Yamada, K. Yabana
    Energy transfer from intense laser pulse to dielectrics in time-dependent density functional theory
    Europ. Phys. J. D. 73_87 (2019). 
    doi.org/10.1140/epjd/e2019-90334-7
  • [Multiscale][Ehrenfest MD][Diamond][Coherent Phonon]
    A. Yamada and K. Yabana
    Multiscale time-dependent density functional theory for a unified description of ultrafast dynamics: Pulsed light, electron, and lattice motions in crystalline solids
    Phys. Rev. B 99, 245103 (2019).
    DOI:10.1103/PhysRevB.99.245103
  • [Metasurface][Jellium model] 
    T. Takeuchi, M. Noda, and K. Yabana
    Operation of quantum plasmonic metasurfaces using Electron Transport through Subnanometer Gaps
    ACS Photonics 6, 2517 (2019).
    DOI:10.1021/acsphotonics.9b00889
  • [Solid][Diamond][Decoherence] 
    Isabella Floss, Christoph Lemell, Kazuhiro Yabana and Joachim Burgdörfer
    Incorporating decoherence into solid-state time-dependent density functional theory
    Phys. Rev. B 99, 224301 (2019). 
    DOI: 10.1103/PhysRevB.99.224301
  • [Near field][Silicon][Thin film] 
    M. Noda, K. Iida, M. Yamaguchi, T. Yatsui, K. Nobusada
    Direct wave vector excitation in an indirect band gap semiconductor of silicon with an optical near-field
    Phys. Rev. Applied 11, 044053 (2019).
    DOI:10.1103/PhysRevApplied.11.044053
  • [Solid][SiO2][Nonlinear excitation]
    T. Otobe, Y. Shinohara, S.A. Sato, K. Yabana
    Theory for Electron Excitation in Dielectrics under an Intense Linear and Circularly Polarized Laser Fields
    J. Phys. Soc. Jpn. 88, 024706 (2019).
    https://doi.org/10.7566/JPSJ.88.024706
  • [Solid][Si thin film][Maxwell-TDDFT single-scale]
    S. Yamada, M. Noda, K. Nobusada and K. Yabana
    Time-dependent density functional theory for interaction of ultrashort light pulse with thin materials
    Phys. Rev. B 98, 245147 (2018).
    https://doi.org/10.1103/PhysRevB.98.245147

 

2018

  • [Solid][GaAs][Attosecond]
    F. Schlaepfer, M. Lucchini, S.A. Sato, M. Volkov,
    L. Kasmi, N. Hartmann, A. Rubio, L. Gallmann, and U. Keller
    Attosecond optical-field-enhanced carrier injection into the GaAs conduction band
    Nature Physics 14, 560  (2018)
    https://doi.org/10.1038/s41567-018-0069-0
  • [Solid][SiO2][Photocarrier generation]
    S.A. Sato, M. Lucchini, M. Volkov, F. Schlaepfer, L. Gallmann, U. Keller, A. Rubio
    Role of intra-band transitions in photo-carrier generation
    Phys. Rev. B 98, 035202 (2018)
    https://doi.org/10.1038/s41567-018-0069-0
  • [Solid] [Linear Response, Nonlinear Optics]
    C.D. Pemmaraju, F.D. Vila, J.J. Kas, S.A. Sato, J. Rehr, K. Yabana and D. Prendergast
    Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set
    Comp. Phys. Comm. 226, 30 (2018)
    https://doi.org/10.1016/j.cpc.2018.01.013
  • [HPC] [Performance Evaluation]
    Y. Hirokawa, T. Boku, S.A. Sato and K. Yabana
    Performance Evaluation of Large Scale Electron Dynamics Simulation under Many-core Cluster based on Knights Landing
    The 1st International Conference on HPC Asia2018 (2018)
    https://doi.org/10.1145/3149457.3149465

2017

  • M. Nakano, T. Otobe, and R. Itakura
    Anomalous photoelectron angular distribution in ionization of Kr in intense ultraviolet laser fields
    Phys. Rev. A 95, 063404 (2017)
    https://doi.org/10.1103/PhysRevA.95.063404
  • T. Otobe, T. Hayashi, and M. Nishikino
    Effect of plasma formation on the double pulse laser excitation of cubic silicon carbide
    Appl. Phys. Lett. 111, 171107 (2017)
    https://doi.org/10.1063/1.4997363
  • [Nanostructure] [Acetylene/IRMOF-10] [Optical near field]
    M. Noda, M. Yamaguchi and K. Nobusada,
    Second Harmonic Excitation of Acetylene by the Optical Near Field Generated in a Porous Material
    J. Phys. Chem. C 121, 11687 (2017)
    https://doi.org/10.1021/acs.jpcc.7b02744
  • [Interface] [SiO2–graphene–boron nitride] [Bias Voltage]
    K. Iida, M. Noda and K. Nobusada,
    Development of Theoretical Approach for Describing Electronic Properties of Hetero-Interface Systems under Applied Bias Voltage
    J. Chem. Phys. 146, 084706 (2017)
    https://doi.org/10.1063/1.4976970
  • I. Floss, C. Lemell, G. Wachter, V. Smejkal, S.A. Sato, X.M. Tong, K. Yabana, and J. Burgdörfer
    Ab initio multiscale simulation of high-order harmonic generation in solids
    Phys. Rev. A 97, 011401(R):1-5 (2018)
    DOI: 10.1103/PhysRevA.97.011401
  • T. Yatsui, H. Saito, K. Nishioka, B. Leuschel, O. Soppera, K. Nobusada
    Effects of a power and photon energy of incident light on near-field etching properties
    Appl. Phys. A (2017) 123:751
    doi.org/10.1007/s00339-017-1361-z
  • T. Yatsui, M. Yamaguchi, K. Nobusada
    Nano-scale chemical reactions based on non-uniform optical near-fields and their applications
    PROGRESS IN QUANTUM ELECTRONICS 55, 166 (2017)
    https://doi.org/10.1016/j.pquantelec.2017.06.001
  • K. Iida, K. Nobusada
    Atomically modified thin interface in metal-dielectric hetero-integrated systems: control of electronic properties
    JOURNAL OF PHYSICS-CONDENSED MATTER 29,145503 (2017)
    http://iopscience.iop.org/article/10.1088/1361-648X/aa5e81

 

2016

  • [Solid][Diamond][Attosecond]
    M. Lucchini, S.A. Sato, A. Ludwig, J. Herrmann, M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gallmann, U. Keller
    Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond
    Science 353, 916-919 (2016).
    https://doi.org/10.1126/science.aag1268
  • [Solid][SiO2][Attosecond]
    A. Sommer, E.M. Bothschafter, S.A. Sato, C. Jakubeit, T. Latka, O. Razskazovskaya, H. Fattahi, M. Jobst, W. Schweinberger, V. Shirvanyan, V.S. Yakovlev, R. Kienberger, K. Yabana, N. Karpowicz, M. Schultze, F. Krausz
    Attosecond nonlinear polarization and light-matter energy transfer in solids
    Nature 534, 86-90 (2016).
    https://doi.org/10.1038/nature17650
  • [Molecule] [Para-Dinitrobenzene, Paranitroaniline] [Optical Near Field]
    M. Yamaguchi and K. Nobusada,
    Large Hyperpolarizabilities of the Second Harmonic Generation Induced by Nonuniform Optical Near Fields
    J. Phys. Chem. C 120, 23748 (2016)
    https://doi.org/10.1021/acs.jpcc.6b08507
  • [Interface] [Silicene–amine] [Electric Field Bias]
    K. Iida and K. Nobusada
    Electric field effects on the electronic properties of the silicene-amine interface
    Phys. Chem. Chem. Phys. 18, 15639 (2016)
    https://doi.org/10.1039/c6cp02157c
  • [Cluster] [Au133(SPhtBu)52] [Linear Response]
    K. Iida, M. Noda and K. Nobusada
    Interface Electronic Properties Between a Gold Core and Thiolate Ligands: Effects on an Optical Absorption Spectrum in Au133(SPh-tBu)52
    J. Phys. Chem. C 120, 2753 (2016)
    https://doi.org/10.1021/acs.jpcc.5b10846

 

2015

  • [Solid][Diamond][Nonlinear Optics]
    T. Otobe, Y. Shinohara, S.A. Sato, K. Yabana
    Femtosecond time-resolved dynamical Franz-Keldysh effect
    Phys. Rev. B93, 045124 (2016).
    arXiv:1504.01458
    https://doi.org/10.1103/PhysRevB.93.045124
  • [Solid][SiO2][Optical Current]
    G. Wachter, S.A. Sato, C. Lemell, X.M. Tong, K. Yabana, J. Burgdoerfer
    Controlling ultrafast currents by the non-linear photogalvanic effect
    New J. Phys. 17, 123026 (2015).
    arXiv:1503.06146
    https://doi.org/10.1088/1367-2630/17/12/123026
  • [Molecule][Endohedral Fullerene][Attosecond]
    G. Wachter, S. Nagele, S.A. Sato, R. Pazourek, M. Wais, C. Lemell, X.-M. Tong, K. Yabana, J. Burgdoerfer
    Protocol for observing molecular dipole excitations by attosecond self-streaking
    Phys. Rev. A92, 061403(R)
    arXiv:1505.05857 )
    https://doi.org/10.1103/PhysRevA.92.061403
  • [Solid][Silicon, Germanium][Linear Response, Nonlinear Optics]
    S.A. Sato, Y. Taniguchi, Y. Shinohara, K. Yabana
    Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory
    J. Chem. Phys. 143, 224116 (2015)
    arXiv:1507.05156
    https://doi.org/10.1063/1.4937379
  • [Solid][SiO2][Laser Damage]
    S.A. Sato, K. Yabana, Y. Shinohara, T. Otobe, K.M. Lee, G.F. Bertsch
    Time-dependent density functional theory of high-intensity, short-pulse laser irradiation on insulators
    Phys. Rev. B92 205413 (6 pages) (2015).
    arXiv: 1412.1445
    https://doi.org/10.1103/PhysRevB.92.205413
  • [Interface] [Ag Cluster/Dielectric Surface] [Electronic Structure, Linear Response]
    K. Iida, M. Noda and K. Nobusada
    Control of Optical Response of a Supported Cluster on Different Dielectric Substrates
    J. Chem. Phys. 142 214702 (2015)
    https://doi.org/10.1063/1.4921840

 

2014

  • Kyung-Min Lee, Chul Min Kim, Shunsuke A. Sato, Tomohito Otobe, Yasushi Shinohara, Kazuhiro Yabana, and Tae Moon Jeong
    First-principles simulation of the optical response of bulk and thin-film alpha-quartz irradiated with an ultrashort intense laser pulse
    J. Appl. Phys. 115, 053519 (2014)
    https://doi.org/10.1063/1.4864662
  • S. A. Sato, K. Yabana, Y. Shinohara, T. Otobe, and G. F. Bertsch
    Numerical pump-probe experiments of laser-excited silicon in nonequilibrium phase
    Phys. Rev. B 89, 064304 (2014)
    https://doi.org/10.1103/PhysRevB.89.064304
  • [Solid][Silicon][Attosecond]
    M. Schultze, K. Ramasesha, C.D. Pemmaraju, S.A. Sato, D. Whitmore, A. Gandman, J.S. Prell, L.J. Borja, D. Prendergast, K. Yabana, D.M. Neumark, S.R. Leone
    Attosecond band-gap dynamics in silicon
    Science 346(6215), 1348-1352 (2014).
    https://doi.org/10.1126/science.1260311
  • [Solid][Silicon][Nonlinear Optics]
    S.A. Sato, Y. Shinohara, T. Otobe, K. Yabana
    Dielectric response of laser-excited silicon at finite electron temperature
    Phys. Rev. B.90(17), 174303 (8 pages) (2014).
    https://doi.org/10.1103/PhysRevB.90.174303
  • [Algorithm]
    S.A. Sato, K. Yabana
    Maxwell+TDDFT multi-scale simulation for laser-matter interactions
    J. Adv. Simulat. Sci. Eng. 1(1), 98-110 (2014).
    https://doi.org/10.15748/jasse.1.98
  • [Solid][SiO2][Optical Current]
    G. Wachter, C. Lemell, J. Burgdoerfer, S.A. Sato, X.-M. Tong, K. Yabana
    Ab Initio Simulation of Electrical Currents Induced by Ultrafast Laser Excitation of Dielectric Materials
    Phys. Rev. Lett. 113(8), 087401 (5 pages) (2014).
    arXiv:1401.4357
    https://doi.org/10.1103/PhysRevLett.113.087401
  • [Solid][SiO2][Nonlinear Optics]
    S.A. Sato, K. Yabana
    Efficient basis expansion for describing linear and nonlinear electron dynamics in crystalline solids
    Phys. Rev. B 89(22), 224305 (11 pages) (2014).
    https://doi.org/10.1103/PhysRevB.89.224305
  • [Cluster] [Aun (n = 54, 146, 308, 560, 922, 1414)] [Plasmon]
    K. Iida, M. Noda, K. Ishimura and K. Nobusada
    First-Principles Computational Visualization of Localized Surface Plasmon Resonance in Gold Nanoclusters
    J. Phys. Chem. A 118, 11317 (2014)
    https://doi.org/10.1021/jp5088042
  • [Interface] [4-mercaptopyridine/Ag Electrode] [Raman]
    K. Iida, M. Noda and K. Nobusada
    Theoretical Approach for Optical Response in Electrochemical Systems: Application to Electrode Potential Dependence of Surface-Enhanced-Raman Scattering
    J. Chem. Phys. 141, 124124 (2014)
    https://doi.org/10.1063/1.4896537
  • [Algorithm] [Nanostructure] [C60 Array]
    M. Noda, K. Ishimura, K. Nobusada, K. Yabana and T. Boku
    Massively-Parallel Electron Dynamics Calculations in Real-time and Real-Space: Toward Applications to Nanostructures of more than Ten-Nanometers in Size
    J. Comp. Phys. 265, 145 (2014)
    https://doi.org/10.1016/j.jcp.2014.02.006

2013

  • [Solid][Silicon][Nonlinear Optics]
    S.A. Sato, K. Yabana, Y. Shinohara, T. Otobe, G.F. Bertsch
    Numerical pump-probe experiments of laser-excited silicon in nonequilibrium phase
    Phys. Rev. B 89(6), 064304 (8 pages) (2014).
    arXiv:1303.3249
    https://doi.org/10.1103/PhysRevB.89.064304
  • [Solid][SiO2][Laser Damage]
    K.-M. Lee, C.M. Kim, S.A. Sato, T. Otobe, Y. Shinohara, K. Yabana, T.M. Jeong
    First-principles simulation of the optical response of bulk and thin-film α-quartz irradiated with an ultrashort intense laser pulse
    J. Appl. Phys. 115(5), 053519 (8 pages) (2014).
    https://doi.org/10.1063/1.4864662

2012

  • K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, and G. F. Bertsch
    Time-dependent density functional theory for strong electromagnetic fields in crystalline solids
    Phys. Rev. B 85, 045134 (2012)
    https://doi.org/10.1103/PhysRevB.85.045134
  • T. Otobe
    First-principle description for the high-harmonic generation in a diamond by intense short laser pulse
    J. Appl. Phys. 111, 093112 (2012)
    https://doi.org/10.1063/1.4716192
  • [Solid][Sb][Coherent Phonon]
    Y. Shinohara, S.A. Sato, K. Yabana, J.-I. Iwata, T. Otobe, G.F. Bertsch
    Nonadiabatic generation of coherent phonons
    J. Chem. Phys. 137(22), 22A527 (8 pages) (2012).
    https://doi.org/10.1063/1.4739844
  • [Molecule] [Pyrazine/Na4] [Raman]
    M. Noda, T. Yasuike, K. Nobusada and M. Hayashi
    Enhanced Raman spectrum of pyrazine with the aid of resonant electron dynamics in a nearby cluster
    Chem. Phys. Lett. 550, 52 (2012)
    https://doi.org/10.1016/j.cplett.2012.08.059

2011

  • [Solid][Silicon][Nonlinear Optics]
    K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, G.F. Bertsch
    Time-dependent density functional theory for strong electromagnetic fields in crystalline solids
    Phys. Rev. B85(4), 045134 (11 pages) (2012).
    https://doi.org/10.1103/PhysRevB.85.045134
  • [Molecule][Inorganic][MCD]
    K.-M. Lee, K. Yabana, G.F. Bertsch
    Magnetic circular dichroism in real-time time-dependent density functional theory
    J. Chem. Phys. 134(14), 144106 (9 pages) (2011).
    https://doi.org/10.1063/1.3575587
  • [Surface] [Cs/Cu(111)] [Linear Response]
    T. Yasuike and K. Nobusada
    Open-boundary cluster model implemented in first-principles calculations for electronic excited states of an adsorbate-surface system
    Phys. Rev. B 84, 245408 (2011)
    https://doi.org/10.1103/PhysRevB.84.245408
  • [Molecule][Linear Response]
    K. Yabana, Y. Kawashita, T. Nakatsukasa, J.-I. Iwata
    Time-Dependent Density-Functional Theory for Oscillator Strength Distribution Charged Particle and Photon Interactions with Matter
    Recent Advances, Applications, and Interfaces, pp.65-86
    Eds. Y. Hatano, Y. Katsumura, A. Mozumder, CRC Press, Taylor & Francis Group (2011)

2010

  • [Molecule] [C60] [Optical Near Field]
    T. Iwasa and K. Nobusada
    Near-field-induced optical force on a metal particle and C60: Real-time and real-space electron dynamics simulation
    Phys. Rev. A 82, 043411 (2010)
    https://doi.org/10.1103/PhysRevA.82.043411
  • [Solid][Coherent Phonon]
    Y. Shinohara, K. Yabana, Y. Kawashita, J.-I. Iwata, T. Otobe, G.F. Bertsch
    Coherent phonon generation in time-dependent density functional theory
    Phys. Rev. B82 (2010) 155110
    https://doi.org/10.1103/PhysRevB.82.155110
  • [Solid][Coherent Phonon]
    Y. Shinohara, Y. Kawashita, J.-I. Iwata, K. Yabana, T. Otobe, G.F. Bertsch
    First-principles description for coherent phonon generation in diamond
    J. Phys. Cond. Matter 22 (2010) 384212
    http://iopscience.iop.org/article/10.1088/0953-8984/22/38/384212/pdf

 

2009

2008

  • T. Otobe, M. Yamagiwa, J.-I. Iwata, K. Yabana, T. Nakatsukasa, and G. F. Bertsch
    First-principles electron dynamics simulation for optical breakdown of dielectrics under an intense laser field
    Phys. Rev. B 77, 165104 (2008)
    https://doi.org/10.1103/PhysRevB.77.165104

2007

  • [Molecule] [Na10, Benzene] [Photocurrent]
    K. Nobusada and K. Yabana
    Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses
    Phys. Rev. A 75, 032518 (2007)
    https://doi.org/10.1103/PhysRevA.75.032518

2006

  • [Molecule][Linear Response]
    G.F. Bertsch, K. Yabana
    Density functional theory
    Introduction to Computational Methods in Many Body Physics, pp.123-169
    Eds. M. Bonitz and D. Semkat, Rinton press Inc. (2006)
  • [Molecule][Nonlinear Optics]
    K. Yabana, T. Otobe, J.-I. Iwata
    First-principles density-functional approach for many-electron dynamics under intense laser fields
    Springer Series in Chemical Physics 84, pp.77-94 (2006).
  • [Molecule][Linear Response]
    K. Yabana, T. Nakatsukasa, J.-I. Iwata and G.F. Bertsch
    Real-time, real-space implementation of the linear response time-dependent density-functional theory
    Physica Status Solidi (b) 243 (2006) 1121.
    https://onlinelibrary.wiley.com/doi/epdf/10.1002/pssb.200642005

2005

  • [Cluster] [Ag2] [Nonlinear Optics]
    K. Shiratori, K. Nobusada and K. Yabana
    Multiple ionization of a silver diatomic molecule in an intense laser field
    Chem. Phys. Lett. 404, 365 (2005)
    https://doi.org/10.1016/j.cplett.2005.01.124

2004

  • [Cluster] [Ag2, Ag8] [Nonlinear Optics]
    K. Nobusada and K. Yabana,
    High-order harmonic generation from silver clusters: Laser-frequency dependence and the screening effect of d electrons
    Phys. Rev. A 70, 043411 (2004)
    https://doi.org/10.1103/PhysRevA.70.043411

2003

2002

  • [Molecule][Linear Response]
    G.F. Bertsch and K. Yabana
    Density functional theory Introduction to Modern Methods of quantum many-body theory and their applications
    World Scientific, 2002, pp.1-48.
    https://doi.org/10.1142/5023
  • [Molecule][Electron Vibration Coupling]
    G.F. Bertsch, J. Giansiracusa, K. Yabana
    Application of time-dependent density-functional theory to electron-ion coupling in ethylene
    Israel J. Chem. 42 (2002) 151-156
    https://arxiv.org/abs/physics/0210043

2001

  • [Molecule][Linear Response]
    T. Nakatsukasa and K. Yabana
    Photoabsorption spectra in the continuum of molecules and atomic clusters
    J. Chem. Phys. 114 (2001) 2550-2561
    https://doi.org/10.1063/1.1338527
  • [Molecule][Electron Vibration Coupling]
    G.F. Bertsch, A. Schnell, and K. Yabana
    Electron-vibration coupling in time-dependent density-functional theory: application to Benzene
    J. Chem. Phys 115 (2001) 4051-4054
    https://doi.org/10.1063/1.1390513

2000

1999

1997

1996