List of input keywords¶
'[Trial]' : These options are not tested well
&calculation¶
theory¶
character, default=''
Choice of a theory to be used in the calculation.Options:dft
/ ground state calculation based on DFTdft_md
/ ab initio MD simulations based on DFT (electronic ground state)tddft_response
/ linear response TDDFT calculation in real timetddft_pulse
/ simulations under pulsed electric field based on TDDFTsingle_scale_maxwell_tddft
/ single-scale simulation coupling Maxwell and TDDFTmulti_scale_maxwell_tddft
/ multiscale simulation coupling Maxwell and TDDFTmaxwell
/ electromagnetic analysis using finite difference time domain (FDTD) methoddft_k_expand
/ convert checkpoint data of dft with k-points calculation to that of larger supercell system with gamma-point
yn_md¶
[Trial] character, default='n'
Available fortheory='dft'
(ground-state MD) andtheory='tddft_pulse'
(Ehrenfest MD).Switch for molecular dynamics calculation.Options:'y'
/ enable'n'
/ disable
yn_opt¶
[Trial] character, default='n'
Available fortheory='dft'
.Switch for geometry optimization.Options:'y'
/ enable'n'
/ disable
&control¶
sysname¶
character, default='default'
Available for all options oftheory
.A prefix of output files.
base_directory¶
character, default='./'
Available for all options oftheory
.Name of a directory where major output files are stored.
yn_restart¶
character, default='n'
Available for the DFT/TDDFT based options oftheory
.Whether to continue previous calculation (restart) or start a new calculation.Options:'y'
/ enable (restart)'n'
/ disable (new calculation)
directory_read_data¶
character, default='restart/'
Available foryn_restart='y'
.Directory name to read data that are required in the present calculation (restart) and were generated in previous calculations. For TDDFT based options, it specifies the name of the directory containing ground state results that were stored in 'data_for_restart'. When restarting from a checkpoint, it specifies the name of the directory that contains the checkpoint data.
yn_self_checkpoint¶
character, default='n'
Available for the DFT/TDDFT based options oftheory
.With this option, each process writes/reads the restart (and checkpoint) data independently (self data format) so that the restart cost is reduced for large systems. Note that the number of processes and their assignments must be unchanged in restarting. The data is written out into 'checkpoint_gs_XXXXXX/' (DFT) or 'checkpoint_rt_XXXXXX/' (TDDFT).Options:'y'
/ enable'n'
/ disable
checkpoint_interval¶
integer, default=-1
Available for the DFT/TDDFT based options oftheory
.Interval of time steps (iteration steps) to write down the checkpoint data during the time-propagation (SCF iteration). Checkpoint data will not be written if a negative value is set.
yn_reset_step_restart¶
character, default='n'
Available foryn_restart='y'
in the DFT/TDDFT based options oftheory
.With this option, the counter of the SCF iteration step (for DFT) or the counter of the time propagation step (for TDDFT) is reset to 0 at the restart. In the SCF iteration, the density data in the previous SCF iteration step are abondoned.
read_gs_restart_data¶
character, default='all'
Available foryn_restart='y'
withtheory='dft'
.Specify which data are read in the restart. Specified data that are generated in the previous calculation and are contained in the restart (or checkpoint) directory are used in restarting the SCF iteration of DFT. The default option'all'
indicates the complete restart. In other options, a part of restart data are used (other data are prepared in the same way as in the initial SCF step).Options:all
/ all of restart data are readall:single
/ same asall
option but the data is read in the single file format even though the self data format is specified withyn_self_checkpoint='y'
(i.e., the restart data is read in the single file format while written out in the self format)rho_inout
/ only electron densities including those of previous iteration steps are read (from rho_inout.bin file)rho_inout:single
/ same asrho_inout
option but the data is read in the single file format even though the self data format is specified withyn_self_checkpoint='y'
rho
/ only the latest electron density is read (from user-made data)wfn
/ only orbital wavefunctions are read
write_gs_restart_data¶
character, default='all'
Available fortheory='dft'
.Optionsall
/ all of restart data are written outrho_inout
/ only electron densities including those of previous iteration steps are written outwfn
/ only orbital wavefunctions are written outcheckpoint_only
/ the restart data are outputted only in the self data format (separated data for each process) at the last step into 'checkpoint_gs_XXXXXX/' directory (yn_self_checkpoint='y'
is required) without generating the restart data into 'data_for_restart/' directory in the single file format.Output data files are written out in the restart (or checkpoint) directory.The default option'all'
gives the complete set of restart data.
time_shutodown¶
[Trial] real(8), default=-1d0
Available for the DFT/TDDFT based options oftheory
.Timer for automatic shutdown. The unit is second.If a negative time is set, the automatic shutdown will not be performed.
method_wf_distributor¶
character, default='single'
Available for the DFT/TDDFT based options oftheory
.A method to save/load orbital wavefunctions.Optionssingle
: all orbital wavefunctions are saved(loaded) to(from) a single file.slice
: each orbital wavefunction is saved(loaded) to(from) a file. This choice reduces the I/O costs, and increase the flexiblility in handling files for large systems.
nblock_wf_distribute¶
integer, default='16'
Available formethod_wf_distributor='slice'
.In the 'slice' mode,nblock_wf_distribute
files are saved in one directory.
&units¶
unit_system¶
character, default='au'
Unit system to be used in input variables and some of output files.Ifunit_system = 'A_eV_fs'
is chosen, Angstrom for length, eV for energy, and fs for time are adopted.For isolated systems specified byyn_periodic = 'n'
in&system
, a unit of 1/eV is used for the output files of DOS and PDOS ifunit_system = 'A_eV_fs'
is specified, while atomic unit is used if not. For other output files, the Angstrom/eV/fs units are used irrespective of the input keyword. For periodic systems specified byyn_periodic = 'n'
in&system
, the unit system specified by this input keyword is used for most output files. To confirm the unit, see the first few lines of output files.Options:'au'
or'a.u.'
/ atomic unit system'A_eV_fs'
/ Angstrom-eV-fs unit system
¶llel¶
nproc_k¶
nproc_ob¶
nproc_rgrid(3)¶
integer, default=0
Options:nproc_k
/ Number of MPI parallelization for k-points of electron orbitals.nproc_ob
/ Number of MPI parallelization for orbital index of electron orbitals.nproc_rgrid(3)'
/ Number of MPI parallelization for each direction of real-space grid that are used for electron orbitals and density.Defaults are0
fornproc_k
/nproc_ob
and(0,0,0)
fornproc_rgrid
. In the default choice, MPI assignment is achieved atomatically. Users can specifynproc_k
,nproc_ob
, andnproc_rgrid
manually. In that case, there are several constraints that should be fulfilled:nproc_k
must be set to1
for&system/yn_periodic='n'
.nproc_k
andnproc_ob
must be set to1
fortheory='maxwell'
.nproc_k
*nproc_ob
*nproc_rgrid(1)
*nproc_rgrid(2)
*nproc_rgrid(3)
= total number of processes.
yn_ffte¶
character, default='n'
Available for&system/yn_periodic='y'
For periodic systems, SALMON uses Fourier transformation to solve a poisson equation.This switch selects if FFTE library is used or not. If FFTE is not used, the Fourier transformation in a simple algorithm is carried out.Options'y'
/ enable'n'
/ disableTo enable it, following relations must be satisfied.mod(num_rgrid(1), nproc_rgrid(2)) == 0
mod(num_rgrid(2), nproc_rgrid(2)) == 0
mod(num_rgrid(2), nproc_rgrid(3)) == 0
mod(num_rgrid(3), nproc_rgrid(3)) == 0
yn_scalapack¶
character, default='n'
Available for&calculation/theory='dft' or 'dft_md'
To calculate large systems, an eigenvalue problem in the subspace diagonalization becomes a bottle-neck in the ground state calculation. In SALMON, ScaLAPACK library can be used to solve the eigenvalue problem.To enable it, it is necessary to link ScaLAPACK library when you build SALMON.Options:'y'
/ enable'n'
/ disable
yn_eigenexa¶
character, default='n'
Available for&calculation/theory='dft' or 'dft_md'
SALMON can use RIKEN R-CCS EigenExa library to solve eigenvalue problem in subspace diagonalization. It is more efficient than ScaLAPACK to diagonalize matrices of large dimension. To enable it, it is necessary to link both ScaLAPACK and EigenExa libraries when you build SALMON.Options:'y'
/ enable'n'
/ disable
yn_diagonalization_red_mem¶
character, Default='n'
Available for¶llel/yn_scalapack='y'
or¶llel/yn_eigenexa='y'
This option reduces memory consumption in using ScaLAPACK/EigenExa libraries.Options:'y'
/ enable'n'
/ disable
process_allocation¶
character, default='grid_sequential'
This controlls the order of process allocation.Options:'grid_sequential'
/ real-space grid major ordering.'orbital_sequential'
/ orbital-space major ordering.Suggestion:&calculation/theory='dft' or 'dft_md'
/'orbital_sequential'
&calculation/theory='tddft*' or '*maxwell_tddft'
/'grid_sequential'
&system¶
yn_periodic¶
character, default='n'
Available for all options oftheory
.Specify boundary condition for electron orbitals.Options:'y'
/ periodic systems (crystalline solids)'n'
/ isolated systems (molecules and nano-particles)
spin¶
character, default='unpolarized'
Available for the DFT/TDDFT based options oftheory
.It specifies the spin state of the system, spin-unpolarized (closed shell) and spin-polarized (open shell).Options'unpolarized'
/ spin-unpolarized systems (default)'polarized'
/ spin-polarized systems
al(3)¶
real(8), default=0d0
Available for the DFT/TDDFT based options oftheory
.Spatial box size or lattice constants for cuboid cell (x, y, z).For nonorthogonal cell, seeal_vec1(3)
,al_vec2(3)
,al_vec3(3)
.
al_vec1(3)¶
al_vec2(3)¶
al_vec3(3)¶
real(8), default=0d0
Available foryn_periodic = 'y'
in the DFT/TDDFT based options oftheory
.Primitive lattice vectors for nonorthogonal cell. For cuboid cell, seeal(3)
.
nstate¶
integer, default=0
Available for the DFT/TDDFT based options oftheory
.of orbitals/bands to be calculated. In the time evolution calculation of dielectrics, only occupied orbitals are evolved even when morenstate
is specified.
nelec¶
integer, default=0
Available for the DFT/TDDFT based options oftheory
.Number of valence electrons in the system.
nelec_spin(2)¶
integer, Default=0
Available for the DFT/TDDFT based options oftheory
.Number of up/down-spin electrons are specified bynelec_spin(1)/nelec_spin(2)
.This option is incompatible withnelec
. (Ifnelec_spin
is specified,nelec
is ignored.)
temperature¶
real(8), default=-1d0
Available for DFT-based options oftheory
.It specifies the temperature for electrons. The value must be given using the unit of energy as specified in&units/unit_system
.The kelvin unit can also be used by the keywordtemperature_k
instead oftemperature
(see next).Occupation numbers are updated in every SCF step in the following way.temperature < 0
/ the occupation numbers are fixed bynelec
(appropriate for systems with energy gap).temperature = 0
/ redistribution of the occupation numbers by the step function (metallic system at zero temperature).temperature > 0
/ redistribution of the occupation numbers by the Fermi-Dirac distribution function.
temperature_k¶
[Trial] real(8), default=-1d0
Available for DFT-based options oftheory
.The same astemperature
but kelvin is used as the unit.
nelem¶
integer, default=0
Available for the DFT/TDDFT based options oftheory
.Number of atomic elements in the system.
natom¶
integer, default=0
Available for the DFT/TDDFT based options oftheory
.Number of atoms in the system.
file_atom_red_coor¶
[Trial] character, default='none'
Available for the DFT/TDDFT based options oftheory
.Name of the file that contains atomic positions given in reduced coordinates. This option is incompatible with&system/file_atom_coor
,&atomic_coor
, and&atomic_red_coor
.
file_atom_coor¶
[Trial] character, default='none'
Available for the DFT/TDDFT based options oftheory
.Name of the file that contains atomic Cartesian coordinates (The unit is specified by&units/unit_system
). This option is incompatible with&system/file_atom_coor
,&atomic_coor
, and&atomic_red_coor
.
yn_symmetry¶
[Trial] character, default='n'
Available for orthogonal cell system with the DFT/TDDFT based options oftheory
.Symmetry option. Pre-generated input file, "sym.dat", is necessary. (details are not explained in the current manual)Options(e.g.)'yyn'
/ symmetry option is applied for the x and y direction (under applied electric field in the z-direction)'n'
/ disable
absorbing_boundary¶
[Trial] character, default='none'
Available for the TDDFT based option oftheory
with orthogonal unit cell.Absorbing boundary condition for electrons. (T. Nakatsukasa et al., J. Chem. Phys., 114, 2550 (2001))Options:'none'
/ disable (default)'z'
/ absorbing boundary region is set in z direction for'yn_periodic = 'y'
imaginary_potential_w0¶
real(8), default='0d0'
Available whenabsorbing_boundary
options is not'none'
.Strength of the absorbing (imaginary) potential.
imaginary_potential_dr¶
real(8), default='0d0'
Available whenabsorbing_boundary
options is not'none'
.Thickness of the absorbing (imaginary) potential. Forabsorbing_boundary='z'
, the absorbing region is 0 < z <imagnary_potential_dr
andal(3)
-imagnary_potential_dr
< z <al(3)
&atomic_red_coor¶
Atomic coordinates in periodic systems ('yn_periodoc = 'y'
) are specified in reduced coordinates using the following format:'Si' 0.00 0.00 0.00 1'Si' 0.25 0.25 0.25 1...Here, the information of atoms is ordered in row, the first row for the first atom, etc. The number of rows must be equal to&system/natom
. Atomic spicies are written in the first column although they are not used in the calculation. The second, third and fourth columns are reduced coordinates for the first, second and third directions, respectively. The fifth column is a serial number of the atom spieces, which is defined in&pseudo
.This option is incompatible with&system/file_atom_red_coor
,&system/file_atom_coor
, and&atomic_coor
.
&atomic_coor¶
Atomic coordinates are specified in the same way asatomic_red_coor
but with length dimension. The unit chosen by&units/unit_length
is applied.This option is incompatible with&system/file_atom_red_coor
,&system/file_atom_coor
, and&atomic_red_coor
.
&pseudo¶
izatom(:)¶
integer, default=-1
Available for the DFT/TDDFT based options oftheory
.Atomic number of the element. The size of array is equal to&system/nelem
.
file_pseudo(:)¶
character, default='none'
Available for the DFT/TDDFT based options oftheory
.File name of the pseudopotential file. The size of array is equal to&system/nelem
.
lmax_ps(:)¶
integer, default=-1
Available for the DFT/TDDFT based options oftheory
.Maximum angular momentum of pseudopotential projectors.If not given, values specified in the pseudopotential file will be used. The size of array is equal to&system/nelem
.
lloc_ps(:)¶
integer, default=-1
Available for the DFT/TDDFT based options oftheory
.Angular momentum of the pseudopotential that will be treated as local. The size of array is equal to&system/nelem
.
yn_psmask(:)¶
[Trial] character, default='n'
Available for the DFT/TDDFT based options oftheory
.Fourier filtering for pseudopotentials. The size of array is equal to&system/nelem
.Options:'y'
/ enable'n'
/ disable
alpha_mask(:)¶
[Trial] real(8), default=0.8d0
Available for the DFT/TDDFT based options oftheory
.Parameter for the Fourier filtering of the pseudopotential. The size of array is equal to&system/nelem
.
gamma_mask(:)¶
[Trial] real(8), default=1.8d0)
Available for the DFT/TDDFT based options oftheory
.Parameter for the Fourier filtering of the pseudopotential. The size of array is equal to&system/nelem
.
eta_mask(:)¶
[Trial] real(8), default=15.0d0
Available for the DFT/TDDFT based options oftheory
.Parameter for the Fourier filtering of the pseudopotential. The size of array is equal to&system/nelem
.
&functional¶
xc¶
character, default='none'
Available for the DFT/TDDFT based options oftheory
.Exchange-correlation functional to be used.In the present version, functionals 'PZ', 'PZM' and 'TBmBJ' are available for bothyn_periodic = 'y' and 'n'
calculations in the adiabatic approximation.Options:'PZ'
: Perdew-Zunger LDA :Phys. Rev. B 23, 5048 (1981).'PZM'
: Perdew-Zunger LDA with modification to improve sooth connection between high density form and low density one. :J. P. Perdew and Alex Zunger, Phys. Rev. B 23, 5048 (1981).'TBmBJ'
: Tran-Blaha meta-GGA exchange with Perdew-Wang correlation. :Fabien Tran and Peter Blaha, Phys. Rev. Lett. 102, 226401 (2008). John P. Perdew and Yue Wang, Phys. Rev. B 45, 13244 (1992). This potential is known to provide a reasonable description for the bandgap of various insulators. For this choice, the additional mixing parameter 'cval' may be specified. See below.
cval¶
real(8), default=-1d0
Available forxc='TBmBJ'
.Mixing parameter in Tran-Blaha meta-GGA exchange potential. Ifcval
is set to a minus value, the mixing-parameter is evaluated by the formula in the original paper [Phys. Rev. Lett. 102, 226401 (2008)], . However, note that the value may be different from that in all electron calculations.
cname¶
alibxc¶
alibx¶
alibc¶
character, default='none'
Available for the DFT/TDDFT based options oftheory
.Since version 1.1.0, exchange-correlation functionals in Libxc library (http://www.tddft.org/programs/libxc/) have been usable in SALMON. At present, usable functionals are limited to LDA and GGA. For periodic systems, meta-GGA functionals are usable as well. To specify the exchange-correlation potentials of Libxc library, there are two ways. If the exchange and correlation potentials are given separately, you need to specify bothalibx
andalibc
separately. If the exchange and correlation potentials are given as a combined set, you need to specifyalibxc
. We show below an example:&functionalalibx = 'LDA_X'alibc = 'LDA_C_PZ'Note that, the hybrid functionals (hybrid gga/mgga) are not supported.To use libxc libraries,--enable-libxc
option must be added in excecuting configure. The available option of the exchange-correlation functionals are listed in the LibXC website. [See http://www.tddft.org/programs/libxc/functionals/]
&rgrid¶
dl(3)¶
real(8), default=0d0
Available for the DFT/TDDFT based options oftheory
.Spacing of real-space grids.This cannot be used together with&rgrid/num_rgrid
.
num_rgrid(3)¶
integer, default=0
Available for the DFT/TDDFT based options oftheory
.Number of real-space grids for each direction.This cannot be used together with&rgrid/dl
.
&kgrid¶
num_kgrid(3)¶
integer, default=1
Available foryn_periodic='y'
in the DFT/TDDFT based options oftheory
.Number of k-points (grid points of k-vector) for each direction discretizing the Brillouin zone.
file_kw¶
character, default='none'
Available foryn_periodic='y'
in the DFT/TDDFT based options oftheory
.File name for a file that includes user specified k-points. This file will be read ifnum_kgrid
is equal to 0 or negative values. The file should be described in the following format :8 #(number of k-points)1 -0.50 -0.50 -0.50 0.1250 #(id, kx, ky, kz, weight)2 -0.50 -0.50 0.00 0.12503 -0.50 0.00 -0.50 0.12504 -0.50 0.00 0.00 0.12505 0.00 -0.50 -0.50 0.12506 0.00 -0.50 0.00 0.12507 0.00 0.00 -0.50 0.12508 0.00 0.00 0.00 0.1250
&tgrid¶
nt¶
integer, Default=0
Available for 'dft_md' and TDDFT-based options oftheory
.Number of total time steps for real-time propagation.
gram_schmidt_interval¶
integer, default=-1
Available for TDDFT-based options oftheory
.Interval of a time step for the Gram-Schmidt orthonormalization of the orbitals during time evolution calculations. If this is set to a negative value, no Gram-Schmidt orthogonalization will be achieved. If this is set to zero, the Gram-Schumidt orthogonalization is carried out once at the initial step only. Usually this Gram-Schmidt orthogonalization is not necessary and should not be used.
&propagation¶
n_hamil¶
- integer, default=4
- Available for TDDFT-based options of
theory
.Order of the Taylor expansion adopted for the propagation operator.
propagator¶
character, default=middlepoint
Available for TDDFT-based options oftheory
.Choice of the propagator in the time evolution calculation.Options:middlepoint
/ Hamiltoinan at midpoint of two-times is used in the propagation ifyn_predictor_corrector = 'y'
. Hamiltoian at the time is used ifyn_predictor_corrector = 'n'
.aetrs
/ time-reversal symmetry propagator. [M.A.L. Marques, A. Castro, G.F. Bertsch, and A. Rubio, Comput. Phys. Commun., 151 60 (2003)].
yn_predictor_corrector¶
- character, default='n'
- Available for TDDFT-based options of
theory
.Switch of the predictor-corrector method of TDDFT.For meta-GGA functionals (xc='tbmbj'
), the predictor corrector is automatically used even withyn_predictor_corrector='n'
.Options:'y'
/ enable'n'
/ disable
yn_fix_func¶
- [Currently not available] character, default='n'
- Available for 'dft_md' and TDDFT-based options of
theory
.Switch not to update the Hamiltonian during the time evolution, i.e., ground state Hamiltonian is used during the propagation.Options:'y'
/ enable'n'
/ disable
&scf¶
method_init_wf¶
character, default='gauss'
Available for 'dft' and 'dft_md' options oftheory
.The generation method of the initial orbitals at the begening of the SCF iteration in DFT calculations. For a stable calculation of very large systems, multiple gaussian functions are preferred for a stable calculation.Options:gauss
/ single gauss function per orbital centered at a position determined by random numbersgauss2
/ two gauss functions per orbital centered at positions determined by random numbersgauss3
/ three gauss functions per orbital centered at positions determined by random numbersgauss4
/ four gauss functions per orbital centered at positions determined by random numbersgauss5
/ five gauss functions per orbital centered at positions determined by random numbersgauss10
/ ten gauss functions per orbital centered at positions determined by random numbersrandom
/ a random number is assigned at each real-space grid point of orbitals
method_init_density¶
[Trial] character, default='wf'
Available for 'dft' and 'dft_md' options oftheory
.Specifying how to generate the initial density to start the SCF iteration in the DFT calculation.Supported for limited formats of pseudopotentials ('KY' and 'UPF').Options:wf
/ generate from the initial wavefunctions (cf.method_init_wf
).pp
/ generate from a superposition of the pseudo-atom densities.
iseed_number_change¶
integer, default=0
Available for 'dft' and 'dft_md' options oftheory
.Change a seed of random numbers that are used to generate initial orbitals. The value specified by this parameter is added to the seed.
nscf¶
integer, Default=300
Available for 'dft' and 'dft_md' options oftheory
.Number of maximum SCF iterations in the DFT calculation.
method_min¶
character, Default='cg'
Available for 'dft' and 'dft_md' options oftheory
.Method for updating orbitals in the SCF iteration. At present only confjugate gradient method is implemented.Options:cg
/ Conjugate-Gradient(CG) method
ncg¶
integer, default=4
Available for 'dft' and 'dft_md' options oftheory
.Number of interations of conjugate-gradient method in the SCF iteration.
ncg_init¶
integer, default=4
Available for 'dft' and 'dft_md' options oftheory
.Number of interations of conjugate-gradient method for the first SCF step.
method_mixing¶
character, default='broyden'
Available for 'dft' and 'dft_md' options oftheory
.Method to update density/potential in the scf iteration.Options:simple
/ Simple mixing methodbroyden
/ modified Broyden methodpulay
/ Pulay method
mixrate¶
real(8), default=0.5d0
Available formethod_mixing='simple'
in 'dft' and 'dft_md' options oftheory
.Mixing ratio for simple mixing.
nmemory_mb¶
integer, default=8
Available formethod_mixing='broyden'
in 'dft' and 'dft_md' options oftheory
.Number of previous densities to be stored in the SCF iteration using the modified Broyden method. This must be less than 21.
alpha_mb¶
real(8), default=0.75d0
Available formethod_mixing='broyden'
in 'dft' and 'dft_md' options oftheory
.A parameter of the modified Broyden method.
nmemory_p¶
integer, default=4
Available formethod_mixing='pulay'
in 'dft' and 'dft_md' options oftheory
.Number of previous densities to be stored in the SCF iteration using the Pulay method.
beta_p¶
real(8), default=0.75d0
Available formethod_mixing='pulay'
in 'dft' and 'dft_md' options oftheory
.A parameter of the mixing rate of the Pulay method.
yn_auto_mixing¶
character, default='n'
Available for 'dft' and 'dft_md' options oftheory
.Switch to change the mixing rate automatically (i.e. automatic adjustments ofmixrate
/alpha_mb
/beta_p
)Options:'y'
/ enable'n'
/ disable
update_mixing_ratio¶
real(8), default=3.0d0
Available foryn_auto_mixing='y'
in 'dft' and 'dft_md' options oftheory
.Threshold for the change of the mixing rate inyn_auto_mixing='y'
option. The mixing-rate is reduced to half when the ratio of the density differences between the current and previous iteration steps is larger thanupdate_mixing_ratio
.
yn_subspace_diagonalization¶
character, default='y'
Available for 'dft' and 'dft_md' options oftheory
.Switch for the subspace diagonalization during SCF iterations.Options:'y'
/ enable'n'
/ disable
convergence¶
character, default='rho_dne'
Available for 'dft' and 'dft_md' options oftheory
.Specify a quantity that is used for convergence check of the SCF iteration.Options:'rho_dne'
/ Convergence is checked by sum_ix|rho(ix,iter)-rho(ix,iter-1)|dx/N. N is&system/nelec
.'norm_rho'
/ Convergence is checked by the square of the norm of the density difference, ||rho_iter(ix)-rho_iter-1(ix)||2=sum_ix|rho(ix,iter)-rho(ix,iter-1)|2.'norm_rho_dng'
/ Convergence is checked by ||rho_iter(ix)-rho_iter-1(ix)||2/(number of grids). "dng" means "devided by number of grids".'norm_pot'
/ Convergence is checked by ||Vlocal_iter(ix)-Vlocal_iter-1(ix)||2, where Vlocal is Vh + Vxc + Vps_local.'pot_dng'
/ Convergence is checked by ||Vlocal_iter(ix)-Vlocal_iter-1(ix)||2/(number of grids).
threshold¶
real(8), default=1d-17 [a.u.] (for convergence='rho_dne'
) and -1 (for other options of convergence
))
Available for 'dft' and 'dft_md' options oftheory
.Threshold of convergence that is specified byconvergence
keyword.
nscf_init_redistribution¶
integer, default=10
Available for 'dft' and 'dft_md' options oftheory
.Number of initial iterations during which a redistribution of the occupation number is suppressed in the finite temperature calculation.
nscf_init_no_diagonal¶
integer, default=10
Available for&scf/yn_subspace_diagonalization='y'
in 'dft' option oftheory
.Number of initial iterations during which the subspace diagonalization will not be carried out.
nscf_init_mix_zero¶
integer, default=-1
Available for 'dft' option oftheory
.The density will not be mixed (i.e. fixed) during the given number of the SCF iteration, that is, orbitals are optimized without updating the density.
conv_gap_mix_zero¶
real(8), default=99999d0
Available ifnscf_init_mix_zero
is positive value in the 'dft' option oftheory
.Specify a condition to quit the fixed density iteration forced bystep_initial_mix_zero
option. Mixing of the density will start after the band-gap energy exceeds this parameter for consecutive five SCF iteration steps.
&emfield¶
trans_longi¶
character, default='tr'
Available foryn_periodic='y'
in 'maxwell' and TDDFT based options oftheory
.Specify the treatment of the polarization in the time evolution calculation.Options:'tr'
/ Transverse'lo'
/ longitudinal'2d'
/ 2D maxwell-TDDFT method (for more details, seefilm_thickness
of &maxwell)
ae_shape1¶
ae_shape2¶
character, Default='none'
Available for 'maxwell' and TDDFT based options oftheory
.Envelope shape of the first/second pulse. 'Acos2' indicates a cosine square envelope for vector potential, and 'Ecos2' a cosine square envelope for electric field.Options:'impulse'
/ A weak impulsive field is applied at . This will be used to explore linear response properties. The magnitude of the impulse can be specified bye_impulse
.'Acos2'
/ Envelope of cos2for a vector potential.'Acos3'
/ Envelope of cos3for a vector potential.'Acos4'
/ Envelope of cos4for a vector potential.'Acos6'
/ Envelope of cos6for a vector potential.'Acos8'
/ Envelope of cos8for a vector potential.'Ecos2'
/ Envelope of cos2for an electric field.'Asin2cos'
[Trial] / Envelope of sin2with cosine type oscillation for a vector potential.'Asin2_cw'
[Trial] / Envelope of sin2at the beginning and continuous wave after that for a vector potential (for 'ae_shape1' only).'input'
[Trial] / read the vector potential as a numerical table withfile_input1
option (for 'ae_shape1' only).'none'
/ no incident field is applied.If 'Ecos2' is adopted, 'phi_cep1' must be chosen either 0.75 or 0.25, since otherwise the time integral of the electric field (vector potential at the end of the pulse) does not vanishi. There is no such restriction for 'Acos2' pulses.Foryn_periodic='n'
, available choices are limited to'impulse'
,'Acos2'
, and'Ecos2'
.
file_input1¶
character, default=''
Available ifae_shape1='input'
is specified andtheory='tddft_pulse'
.Name of an input file that contains user-defined vector potential. The file must be a numerical table separated by blank, having four columns; the first column is time and second to fourth columns are Ax/c, Ay/c, Az/c, repsectively. All the quantities are written using the units specified byunit_system
. '#' and '!' may be used for a comment line.Note that a linear interpolation will be applied when the time step differs from that used in the calculation.
e_impulse¶
real(8), Default=1d-2 a.u.
Available for 'maxwell' and TDDFT based options oftheory
.Magnitude of the impulse in the impulsive perturbation. This valiable has the dimention of momentum, energy*time/length.
E_amplitude1¶
E_amplitude2¶
real(8), default=0d0
Available for 'maxwell' and TDDFT based options oftheory
.Maximum amplitude of electric field for the first/second pulse. This valiable has the dimension of electric field, energy/(length*charge). This cannot be set with&emfield/I_wcm2_1
(I_wcm2_2
) simultaneously.
I_wcm2_1¶
I_wcm2_2¶
real(8), default=-1d0
Available for 'maxwell' and TDDFT based options oftheory
.Maximum intensity (W/cm2) of the first/second pulse. This valiable cannot be set with&emfield/E_amplitude1
(E_amplitude2
) simultaneously. For this quantity, a unit of W/cm2is adopted irrespective of&units\unit_system
.
tw1¶
tw2¶
real(8), default=0d0
Available for 'maxwell' and TDDFT based options oftheory
.Duration of the first/second pulse (edge-to-edge time length).Note that this is not the FWHM duration.
omega1¶
omega2¶
real(8), default=0d0
Available for 'maxwell' and TDDFT based options oftheory
.Mean photon energy (average frequency multiplied by the Planck constant) of the first/second pulse.
epdir_re1(3)¶
epdir_re2(3)¶
real(8), default=1d0, 0d0, 0d0
Available for 'maxwell' and TDDFT based options oftheory
.Real part of the polarization unit vector for the first/second pulse.
epdir_im1(3)¶
epdir_im2(3)¶
real(8), default=0d0
Available for 'maxwell' and TDDFT based options oftheory
.Imaginary part of the polarization unit vector for the first/second pulse. Using both real 'epdir_re1' and imaginary 'epdir_im1' parts of the polarization vector, circularly and general ellipsoidary polarized pulses may be described.
phi_cep1¶
phi_cep2¶
real(8), default=0d0
Available for 'maxwell' and TDDFT based options oftheory
.Carrier envelope phase of the first/second pulse. It specifies the CEP in unit of .
t1_t2¶
- real(8), default=0d0
- Available for 'maxwell' and TDDFT based options of
theory
.Time-delay between the first and the second pulses.
t1_start¶
real(8), default=0d0
Available for 'maxwell' and TDDFT based options oftheory
.Shift the starting time of the first pulse. (this is not available for multiscale option).
num_dipole_source¶
integer, default=0
Available for TDDFT based options oftheory
.Number of radiation sources to mimic optical near fields. Maximum number is2
.
vec_dipole_source(3,num_dipole_source)¶
real(8), default=0d0
Available for TDDFT based options oftheory
.Dipole vectors of the radiation sources mimicing optical near fields.
cood_dipole_source(3,num_dipole_source)¶
real(8), default=0d0
Available for TDDFT based options oftheory
.Coordinates of the radiation sources mimicing optical near fields.
rad_dipole_diele¶
real(8), default=2d0 [a.u.]
Available for TDDFT based options oftheory
.Radii of dielectric spheres of the radiation sources mimicing optical near fields.
&singlescale[Trial]¶
method_singlescale¶
character, default='3d'
Available fortheory='single_scale_maxwell_tddft'
.Type of single-scale Maxwell-TDDFT method.Options:'3d'
/ 3-dimensional FDTD + TDDFT'1d'
/ 1-dimensional FDTD (along the z axis) + TDDFT'1d_fourier'
/'1d'
with 3D Fourier component of the vector potential
cutoff_G2_emfield¶
real(8), default=-1d0
Available fortheory='single_scale_maxwell_tddft'
.Cutoff energy of Fourier component of the vector potential when method_singlescale='1d_fourier'.
yn_symmetrized_stencil¶
[Trial] character, default='n'
Available fortheory='single_scale_maxwell_tddft'
.Switch to symmetrize the finite differences for the product of vector potential and orbitals, . This option improves hermiticity of the Hamiltonian although computational cost increases.
yn_put_wall_z_boundary¶
[Trial] character, default='n'
Available for DFT/TDDFT based options oftheory
.Option to put potential wall near the boundary planes at z=0 and z=``&system/al(3)``. This potential prevents electrons from crossing the z-boundary plane. In the single-scale Maxwell-TDDFT method, the electron density on the z-boundary plane harms the norm conservation of electrons due to the discontinuity of the vectorpotential. The wall is described using the square of cosine function.Options:'y'
/ put the potential wall'n'
/ no potential wall
wall_height¶
real(8), default=100.0 [eV]
Available foryn_put_wall_z_boundary='y'
.The height of the potential wall.
wall_width¶
real(8), default=5.0 [Angstrom]
Available foryn_put_wall_z_boundary='y'
.The width of the potential wall defined by the length from the potential peak (z=0 and z=``&system/al(3)``) to the edge.
&multiscale¶
fdtddim¶
[Trial] character, default='1d'
Available fortheory='multi_scale_maxwell_tddft'
withyn_periodic='y'
Dimension of macroscopic scale system (Maxwell(FDTD) calculation) in multiscale Maxwell-TDDFT method.Options:'3d'
/ 3-dimensional FDTD for macroscopic electromagnetism [currently not available]'1d'
/ 1-dimensional FDTD (along the x-axis) for macroscopic electromagnetism
nx_m¶
integer, default=1
Available fortheory='multi_scale_maxwell_tddft'
withyn_periodic='y'
Number of macroscopic grid points inside materials for x-direction.
ny_m¶
nz_m¶
[Trial] integer, default=1)
Available fortheory='multi_scale_maxwell_tddft'
withyn_periodic='y'
Number of macroscopic grid points inside materials for (y/z)-direction.
hx_m¶
- real(8), default=0d0
- Available for
theory='multi_scale_maxwell_tddft'
withyn_periodic='y'
Grid spacing of macroscopic coordinate for x-direction.Variablehx_m
is deprecated, and will be moved to&units/dl_em(1)
hy_m¶
hz_m¶
[Trial] real(8), default=0d0
Available fortheory='multi_scale_maxwell_tddft'
withyn_periodic='y'
Grid spacing of macroscopic coordinate for (y/z)-direction.Variablehy_m
andhz_m
are deprecated, and will be moved to&units/dl_em(2:3)
nxvacl_m¶
nxvacr_m¶
integer, default=1/0
Available fortheory='multi_scale_maxwell_tddft'
withyn_periodic='y'
Number of macroscopic grid points for vacumm region.nxvacl_m
/nxvacr_m
specifies the number for negative / positive x-direction in front of the material.
&maxwell¶
al_em(3)¶
real(8), default=0d0
Available fortheory='maxwell'
.Size of simulation box in electromagnetic analysis.
dl_em(3)¶
real(8), default=0d0
Available fortheory='maxwell'
andtheory='multi_scale_maxwell_tddft'
.Spacing of real-space grids in electromagnetic analysis.
nt_em¶
integer, default=0
Available fortheory='maxwell'
.Number of total time steps of time propagation in electromagnetic analysis.
boundary_em(3,2)¶
character, default='default'
Available fortheory='maxwell'
andtheory='multi_scale_maxwell_tddft'
.Boundary condition in electromagnetic analysis. The first index(1-3 rows) corresponds to x, y, and z axes. The second index(1-2 columns) corresponds to bottom and top of the axes.Options:'abc'
/ absorbing boundary'pec'
/ perfect electric conductor'periodic'
/ periodic boundaryIf&system/yn_periodic='n'
,'default'
,'abc'
, and'pec'
can be chosen, where'default'
automatically chooses'abc'
. If&system/yn_periodic='y'
,'default'
,'abc'
, and'periodic'
can be chosen, where'default'
automatically chooses'periodic'
. | Whentheory='maxwell'
, perfectly matched layer(PML) is used for'abc'
.
shape_file¶
character, default='none'
Available fortheory='maxwell'
.Name of input shape file in electromagnetic analysis. The shape file can be generated by usingFDTD_make_shape
in SALMON utilities (https://salmon-tddft.jp/utilities.html).
media_num¶
integer, default=0
Available fortheory='maxwell'
.Number of media in electromagnetic analysis.
media_type(:)¶
character, default='vacuum'
Available fortheory='maxwell'
.media_type(n)
spesifies type of n-th media in electromagnetic analysis.Options:'vacuum'
'constant media'
'pec'
'lorentz-drude'
If'lorentz-drude'
is chosen, linear response calculation is feasible by setting&emfield/ae_shape1 or ae_shape2='impulse'
.
epsilon_em(:)¶
real(8), Default=1d0
Available fortheory='maxwell'
and for TDDFT based options oftheory
withtrans_longi='2d'
.Fortheory='maxwell'
,epsilon_em(n)
spesifies relative permittivity of n-th media in electromagnetic analysis.For TDDFT based options oftheory
withtrans_longi='2d'
, the relative permittivity of the transparent media on both sides of the film is specified byepsilon_em(1)
andepsilon_em(2)
, respectively.
mu_em(:)¶
real(8), default=1d0
Available fortheory='maxwell'
.mu_em(n)
spesifies relative permeability of n-th media in electromagnetic analysis.
sigma_em(:)¶
real(8), default=0d0
Available fortheory='maxwell'
.sigma_em(n)
spesifies conductivity of n-th media in electromagnetic analysis.
pole_num_ld(:)¶
integer, default=1
Available fortheory='maxwell'
.pole_num_ld(n)
spesifies number of poles of n-th media, available fortype_media(n)='lorentz-drude'
in electromagnetic analysis.
omega_p_ld(:)¶
real(8), default=0d0
Available fortheory='maxwell'
.omega_p_ld(n)
spesifies plasma frequency of n-th media, available fortype_media(n)='lorentz-drude'
in electromagnetic analysis.
f_ld(:,:)¶
real(8), default=0d0
Available fortheory='maxwell'
.f_ld(n,m)
spesifies m-th oscillator strength of n-th media, available fortype_media='lorentz-drude'
in electromagnetic analysis. The first index is the media ID whose maximum value is given bymedia_num
. The second index is the pole ID whose maximum value is given bypole_num_ld(n)
.
gamma_ld(:,:)¶
real(8), default=0d0
Available fortheory='maxwell'
.gamma_ld(n,m)
spesifies m-th collision frequency of n-th media, available fortype_media(n)='lorentz-drude'
in electromagnetic analysis. The first index is the media ID whose maximum value is given bymedia_num
. The second index is the pole ID whose maximum value is given bypole_num_ld(n)
.
omega_ld(:,:)¶
real(8), default=0d0
Available fortheory='maxwell'
.omega_ld(n,m)
spesifies m-th oscillator frequency of n-th media, available fortype_media(n)='lorentz-drude'
in electromagnetic analysis. The first index is the media ID whose maximum value is given bymedia_num
. The second index is the pole ID whose maximum value is given bypole_num_ld(n)
.
wave_input¶
character, default='none'
Available fortheory='maxwell'
.If'source'
, the incident pulse in electromagnetic analysis is generated by the incident current source.
ek_dir1(3)¶
ek_dir2(3)¶
real(8), default=0d0
Available fortheory='maxwell'
.Propagation direction of the first/second pulse.
source_loc1(3)¶
source_loc2(3)¶
real(8), default=0d0
Available fortheory='maxwell'
.Location of the incident current source of the first/second pulse. Note that the coordinate system ranges from-al_em/2
toal_em/2
for&system/yn_periodic='n'
while ranges from0
toal_em
for&system/yn_periodic='y'
.
obs_num_em¶
integer, default=0
Available fortheory='maxwell'
.Number of observation points in electromagnetic analysis. From the obtained results, figure and animation files can be generated by using SALMON utilities (https://salmon-tddft.jp/utilities.html).
obs_samp_em¶
integer, default=1
Available fortheory='maxwell'
.Sampling time-step of the observation in electromagnetic analysis.
obs_loc_em(:,3)¶
real(8), default=0d0
Available fortheory='maxwell'
.obs_loc_em(n,1:3)=x,y,z
spesifies location of the n-th observation point in electromagnetic analysis. Note that the coordinate system ranges from-al_em/2
toal_em/2
for&system/yn_periodic='n'
while ranges from0
toal_em
for&system/yn_periodic='y'
.
yn_obs_plane_em(:)¶
character, default='n'
Available fortheory='maxwell'
.Spesify whether or not to generate output of the electrmagnetic fields on the planes (xy, yz, and xz planes) for n-th observation point. This option must be'y'
for generating animation files by usingFDTD_make_figani
in SALMON utilities (https://salmon-tddft.jp/utilities.html).Options:'y'
'n'
yn_obs_plane_integral_em(:)¶
character, default='n'
Available fortheory='maxwell'
.Specify whether or not to generate output of the spatial integration of electromagnetic fields on the planes (xy, yz, and xz planes) for n-th observation point.Options:'y'
'n'
yn_wf_em¶
character, default='y'
Available fortheory='maxwell'
.Switch of a window function for linear response calculation. Available for&calculation/theory=maxwell
.Options:'y'
'n'
film_thickness¶
real(8), default=0d0
Available for TDDFT based options oftheory
withtrans_longi='2d'
.Thickness of the film for the 2D maxwell-TDDFT method.The relative permittivity of the transparent media on both sides of the film can be specified byepsilon_em(1)
andepsilon_em(2)
, respectively.
media_id_pml(3:2)¶
integer, default=0
Available fortheory='maxwell'
.Media ID used in PML. The first index(1-3 rows) corresponds to x, y, and z axes. The second index(1-2 columns) corresponds to bottom and top of the axes.
media_id_source1¶
media_id_source2¶
- integer, default=0
- Available for
theory='maxwell'
.Media ID used in incident current source1/source2 to generate the first/second pulse.
&analysis¶
projection_option¶
character, default='no'
Available for TDDFT based options oftheory
.Methods of projection to analyze the excited states (e.g. the number of excited electrons).Options:'no'
/ no projection.'gs'
/ projection to eigenstates of ground-state Hamiltonian.'rt'
/ projection to eigenstates of instantaneous Hamiltonian. [currently not available]
out_projection_step¶
integer, default=100
Available for TDDFT based options oftheory
.Resuts of the projection analysis will be outputted evertyout_projection_step
step during the time-propagation.
nenergy¶
integer, default=1000
Number of energy grid points for frequency-domain analysis. This parameter is used, for examples, intheory='tddft_response'
andtheory='maxwell'
.
de¶
real(8), Default=0.01d0 (eV)
Energy grid size for frequency-domain analysis.This parameter is used, for examples, intheory='tddft_response'
andtheory='maxwell'
.
out_rt_energy_step¶
integer, default=10
Available for the TDDFT based option oftheory
.Total energy is calculated and printed everyout_rt_energy_step
time steps.
yn_out_psi¶
character, default='n'
Available fortheory='dft'
.Switch for output of orbitals.Options:'y'
/ enable'n'
/ disableThe format of the output is specified by &analysis/format_voxel_data
.
yn_out_dos¶
character, default='n'
Available fortheory='dft'
.Switch for output of density of states.Options:'y'
/ enable'n'
/ disable
yn_out_pdos¶
character, default='n'
Available fortheory='dft'
.Switch for output of projected density of states.Options:'y'
/ enable'n'
/ disable
yn_out_dos_set_fe_origin¶
character, default='n'
Available whenyn_out_dos='y'
oryn_out_pdos='y'
.Switch to set the Fermi energy to zero.Options:'y'
/ enable'n'
/ disableThis option is not available if the temperature is not set in the calculation.
out_dos_start¶
real(8), default=-1d10 (eV)
out_dos_end¶
real(8), default=1d10 (eV)
Available whenyn_out_dos='y'
oryn_out_pdos='y'
.Lower/Upper bound of the energy range for the density of states spectra.If this value is lower/higher than a specific value near the lowest/highest energy level, this parameter is re-set to the value.
out_dos_nenergy¶
integer, default=601
Available whenyn_out_dos='y'
oryn_out_pdos='y'
.Number of energy points sampled in the density of states spectra.
out_dos_function¶
character, default='gaussian'
Available whenyn_out_dos='y'
oryn_out_pdos='y'
.Choice of the smearing function for the density of states spectra.Options:gaussian
/ Gaussian functionlorentzian
/ Lorentzian function
out_dos_width¶
real(8), default=0.1d0 [eV]
Available whenyn_out_dos='y'
oryn_out_pdos='y'
.Smearing width used in the density of states spectra.
yn_out_dns¶
character, default='n'
Available fortheory='dft'
.Switch to output electron density distribution of the ground state.Options:'y'
/ enable'n'
/ disable
yn_out_dns_rt¶
character, default='n'
Available whentheory='dft_md' or 'theory=tddft_pulse'
.Switch to output electron density distribution during the time-propagation.Options:'y'
/ enable'n'
/ disable
out_dns_rt_step¶
integer, default=50
Available whentheory='dft_md' or 'theory=tddft_pulse'
.Density is outputted everyout_dns_rt_step
steps.
yn_out_dns_ac_je¶
character, default='n'
Available fortheory='single_scale_maxwell_tddft'
.Switch to print the electron density, vector potential, electronic current, and ionic coordinates everyoutdns_dns_ac_je_step
time steps.Options:'y'
/ enable'n'
/ disableThe data written in binary format are divided into files corresponding to the space-grid parallelization number.
out_dns_ac_je_step¶
integer, default=50
Available fortheory='single_scale_maxwell_tddft'
.Electron density, vector potential, electronic current, and ionic coordinates are outputted everyoutdns_dns_ac_je_step
time steps.
yn_out_dns_trans
[currently not available] character default='n'
Available fortheory='tddft_pulse'
.Switch to calculate transition density at specified frequency omega (specified byout_dns_trans_energy
), drho(r,omega)=FT(rho(r,t)-rho_gs(r))/T.Options:'y'
/ enable'n'
/ disable
out_dns_trans_energy¶
[currently not available] real(8), default=1.55d0 [eV]
Available fortheory='tddft_pulse'
.A frequency to output drho(r,omega)=FT(rho(r,t)-rho_gs(r))/T.
yn_out_elf¶
character, default='n'
Available fortheory='dft'
.Switch to output the electron localization function.Options:'y'
/ enable'n'
/ disable
yn_out_elf_rt¶
character, default='n'
Available fortheory='dft_md', 'tddft_pulse'
.Switch to output the electron localization function during the time propagation everyout_elf_rt_step
time steps.Options:'y'
/ enable'n'
/ disable
out_elf_rt_step¶
integer, default=50
Available fortheory='dft_md', 'tddft_pulse'
.Electron localization function during the time propagation is outputted everyout_elf_rt_step
time steps.
yn_out_estatic_rt¶
character, default='n'
Available fortheory='tddft_pulse'
.Switch to print the static electric field during the time propagation everyout_estatic_rt_step
time steps.Options:'y'
/ enable'n'
/ disable
out_estatic_rt_step¶
integer, default=50
Available fortheory='tddft_pulse'
.The static electric field during the time propagation is outputed everyout_estatic_rt_step
time steps.
yn_out_rvf_rt¶
character, default='n'
Available for TDDFT based options and 'dft_md' option oftheory
.Switch to print the coordinates[A], velocities[au], forces[au] of atoms during time-propagation inSYSname
_trj.xyz everyout_rvf_rt_step
time steps.Options:'y'
/ enable'n'
/ disableIfyn_md='y'
, this option is automatically turned on.
out_rvf_rt_step¶
integer, default=10
Available for TDDFT based options and 'dft_md' option oftheory
.The coordinates[A], velocities[au], forces[au] of atoms during time-propagation are outputed inSYSname
_trj.xyz everyout_rvf_rt_step
time steps.
yn_out_tm¶
[Trial] character, default='n'
Available foryn_periodic='y'
withtheory='dft'
.Switch to calculate and print the transition matrix elements between occupied and virtual orbitals toSYSname
_tm.data after the ground state calculation.Options:'y'
/ enable'n'
/ disable
out_ms_step¶
integer, default=100
Available fortheory='multi_scale_maxwell_tddft'
.Some quantities are printed everyout_ms_step
time step in the Maxwell-TDDFT multiscale calculations.
format_voxel_data¶
character, default='cube'
Available foryn_out_psi='y'
,yn_out_dns(_rt)='y'
,yn_out_dns_ac_je='y'
,yn_out_elf(_rt)='y'
,yn_out_estatic_rt='y'
.Option of the file format for three-dimensional volumetric data.'avs'
/ AVS format'cube'
/ cube format'vtk'
/ vtk format
nsplit_voxel_data¶
integer, default=1
Available forformat_voxel_data='avs'
.Number of separated files for three dimensional data.
yn_lr_w0_correction¶
[Trial] character, default='n'
Available foryn_periodic='y'
andtrans_longi='tr'
withtheory='tddft_response'
.Apply correction around zero frequency of dielectric function to suppress numerical error.Options:'y'
/ enable'n'
/ disable
yn_out_perflog¶
character, default='y'
Available for alltheory
Switch to print the performance log of routines and modules.Options:'y'
/ enable'n'
/ disable
format_perflog¶
character, default='stdout'
Available foryn_out_perflog = 'y'
The output format of performance log.Options:'stdout'
/ standard output unit'text'
/ save as a text file'csv'
/ save as a csv format file
&poisson¶
layout_multipole¶
character, Default=3
Available foryn_periodic='n'
in DFT and TDDFT based options oftheory
.This papameter specify how to achieve multipole expansioin in the Hartree potential calculation.Options:1
/ A single pole at the center.2
/ Multipoles are set at each center of atoms.3
/ Multipoles are set at the center of mass of electrons in prepared cuboids in each process.
num_multipole_xyz(3)¶
integer, default=0
Available foryn_periodic='n'
in DFT and TDDFT based options oftheory
.Number of multipoles. When default is set, the number of multipoles is calculated automatically.
lmax_multipole¶
[Trial] integer, default=4
Available foryn_periodic='n'
in DFT and TDDFT based options oftheory
.A maximum order of the multipole expansion to prepare boundary condition of Poisson equation.
threshold_cg¶
real(8), default=1d-15 [a.u.]
Available foryn_periodic='n'
in DFT and TDDFT based options oftheory
.A threshold for the convergence of the Hartree-cg calculation. A quantity examined is given by ||tVh(i)-tVh(i-1)||^2/(number of grids).
&ewald¶
newald¶
integer, default=4
Available foryn_periodic='y'
in DFT/TDDFT based options oftheory
.Parameter of the Ewald method for the ion-ion Coulombic interaction. Short-range part of the Ewald sum is calculated withinnewald
-th nearlist neighbor cells.
aewald¶
real(8), default=0.5d0 [a.u.]
Available foryn_periodic='y'
in DFT/TDDFT based options oftheory
.Square of range separation parameter for Ewald method (This parameter is given only in atomic unit).
cutoff_r¶
real(8), default=-1d0
Available foryn_periodic='y'
in DFT/TDDFT based options oftheory
.Cut-off length in real-space. The length is automatically determined ifcutoff_r
< 0.
cutoff_r_buff¶
real(8), default=2d0 [a.u.]
Available foryn_periodic='y'
inyn_md='y'
or intheory='dft_md'
.Buffer length in radius for book-keeping for real-space interaction.
cutoff_g¶
real(8), Default=-1d0
Available foryn_periodic='y'
in DFT/TDDFT based options ofthddeory
.Cut-off in G-space in the Ewald method. No cut-off in default.
&opt[Trial]¶
nopt¶
integer, default=100
Available foryn_opt='y'
intheory='dft'
.The maximum step number of geometry optimization.
convrg_opt_fmax¶
real(8), default=1d-3 (a.u.)
Available foryn_opt='y'
intheory='dft'
.Convergence threshold of geometry optimization is specified for the maximum force acting on atoms.
max_step_len_adjust¶
real(8), default=-1d0
Available foryn_opt='y'
intheory='dft'
.Set maximum optimization step length (if positive number is given)
&md[Trial]¶
ensemble¶
character, default='NVE'
Available foryn_md='y'
ortheory='dft_md'
.Ensemble in MD option:Options:NVE
/ NVE ensemble (constant energy and volume system)NVT
/ NVT ensemble (constant temperature and volume system)
thermostat¶
character, default='nose-hoover'
Available foryn_md='y'
ortheory='dft_md'
.Thermostat in "NVT" option:Options:nose-hoover
/ Nose-Hoover thermostat
step_velocity_scaling¶
integer, default=-1
Available foryn_md='y'
ortheory='dft_md'
.Time step interval for velocity-scaling. Velocity-scaling is applied if this is set to positive.
step_update_ps¶
integer, default=10
Available foryn_md='y'
ortheory='dft_md'
.Time step interval for updating pseudopotential (Larger number reduces computational time but increases inaccuracy).
temperature0_ion_k¶
real(8), Default=298.15d0 [K]
Available foryn_md='y'
ortheory='dft_md'
.Setting ionic temperature in unit of [K] for NVT ensemble, velocity scaling and generating initial velocities.
yn_set_ini_velocity¶
character, Default='n'
Available foryn_md='y'
ortheory='dft_md'
.Switch to generate initial velocities.Options:y
/ Generate initial velocity with Maxwell-Bortzman distributionn
/ disable
file_ini_velocity¶
[Trial] character, default='none'
Available foryn_md='y'
ortheory='dft_md'
.File name for reading initial velocities. This is read if the file name is given, then, the priority is higher than use ofset_ini_velocity
and restart data of velocities. The format is simply vx(iatom) vy(iatom) vz(iatom) in each line. The order of atoms must be the same as the given coordinates in the main input file. In case of using nose-hoover thermostat, a thermostat variable should be put at the last line (all atomic unit).
thermostat_tau¶
- real(8), default=1d0 [fs]
- Available for
yn_md='y'
ortheory='dft_md'
.Parameter in Nose-Hoover method: controlling time constant for temperature.
yn_stop_system_mom¶
character, default='n'
Available foryn_md='y'
ortheory='dft_md'
.Center of mass is fixed every time step.Options:y
/ enablen
/ disable
&jellium¶
yn_jm¶
character, default='n'
Available for the DFT/TDDFT based options oftheory
.Switch to use jellium model.Options:y
/ enablen
/ disableWhenyn_jm='y'
,&functional/xc
must be'pz'
.
yn_charge_neutral_jm¶
character, default='y'
Available foryn_jm='y'
in the DFT/TDDFT based options oftheory
.Option to enforce exact charge neutrality :Options:y
/ enable.rs_bohr_jm
is modified to fulfill exact charge neutrality.n
/ disable.rs_bohr_jm
is not modified, and there may appears small charge-neutrality error.
yn_output_dns_jm¶
character, default='y'
Available foryn_jm='y'
in the DFT/TDDFT based options oftheory
.Switch to output positive background charge density.Options:y
/ enablen
/ disable
shape_file_jm¶
character, default='none'
Available foryn_jm='y'
in the DFT/TDDFT based options oftheory
.Name of input shape file that contains positive background charge density to be used in the jellium model calculations. The shape file can be generated by usingFDTD_make_shape
in SALMON utilities (https://salmon-tddft.jp/utilities.html). Whenshape_file_jm='none'
, the shape of the positive background charge density is specified bysphere_nion_jm
andsphere_loc_jm
which generate spherical shapes.
num_jm¶
integer, Default=0
Available foryn_jm='y'
in the DFT/TDDFT based options oftheory
.Whenshape_file_jm
is not 'none',num_jm
specifies number of media used in the jellium model. Whenshape_file_jm='none'
,num_jm
specifies number of spherical shapes.
rs_bohr_jm(:)¶
real(8), default=0d0
Available foryn_jm='y'
in the DFT/TDDFT based options oftheory
.Whenshape_file_jm
is not 'none',rs_bohr_jm(n)
spesifies the Wigner-Seitz radius of n-th media. Whenshape_file_jm='none'
,rs_bohr_jm(n)
spesifies the Wigner-Seitz radius of n-th sphere.
sphere_nion_jm(:)¶
integer, default=0
Available foryn_jm='y'
andshape_file_jm='none'
in the DFT/TDDFT based options oftheory
.sphere_nion_jm(n)
spesifies ion number for n-th sphere. At present, only neutral systems can be treated.
sphere_loc_jm(:,3)¶
real(8), default=0d0
Available foryn_jm='y'
andshape_file_jm='none'
in the DFT/TDDFT based options oftheory
.sphere_loc_jm(n,1:3)=x,y,z
spesifies location of center of mass for n-th sphere. Note that the coordinate system ranges from-al/2
toal/2
for&system/yn_periodic='n'
while ranges from0
toal
for&system/yn_periodic='y'
.
&code¶
yn_want_stencil_hand_vectorization¶
character, default='y'
Switch to use hand-vectorized optimization code of stencil in the hamiltonian calculation.SALMON checks if the calculation can use the hand-vectorized code. If it fails, SALMON will use a typical implementation.
yn_want_communication_overlapping¶
character, default='n'
Available fortheory='tddft*' or '*maxwell_tddft'
Switch to use computation/communication overlap algorithm to improve the performance of stencil in the hamiltonian calculation.SALMON checks if the calculation can use the overlap algorithm. If it fails, SALMON will uses a non-overlap algorithm.
stencil_openmp_mode¶
character, default='auto'
This option selects an OpenMP parallelization mode of stencil in the hamiltonian calculation.Options:auto
/ SALMON decides the parallelization target automatically.orbital
/ OpenMP parallelization is applied to orbital (and k-point) loop.rgrid
/ OpenMP parallelization is applied to real-space grid loop.
current_openmp_mode¶
character, default='auto'
This selects an OpenMP parallelization mode of the current calculation.Options:auto
/ SALMON decides the parallelization target automatically.orbital
/ OpenMP parallelization is applied to orbital (and k-point) loop.rgrid
/ OpenMP parallelization is applied to real-space grid loop.
force_openmp_mode¶
character, default='auto'
This selects an OpenMP parallelization mode of the force calculation.Options:auto
/ SALMON decides the parallelization target automatically.orbital
/ OpenMP parallelization is applied to orbital (and k-point) loop.rgrid
/ OpenMP parallelization is applied to real-space grid loop.