Difference between revisions of "Install and Run-v.1.0.0"
(→Installation of CMake) |
(→Build using CMake) |
||
Line 87: | Line 87: | ||
=== Build using CMake === | === Build using CMake === | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
The installation of the CMake is simple. | The installation of the CMake is simple. |
Revision as of 07:52, 22 November 2017
Prerequisites
In this guide, it is assumed that readers have a basic knowledge of Unix and its command line operations. For the installation of SALMON, following packages are required.
- Fortran90/C compiler. Our package assumes users have one of the following compilers:
- GCC (Gnu Compiler Collection)
- Intel Fortran/C Compiler
- Fujitsu Compiler (at FX100 / K-Computer)
- One of the following library packages for linear algebra:
- BLAS/LAPACK
- Intel Math Kernel Library (MKL)
- Fujitsu Scientific Subroutine Library 2 (SSL-II)
- Build tools.
- CMake
If you use other compilers, you may need to change build scripts (CMake). See #Additional options in configure.py script. If no numerical library is installed on your computer system, you may need to install BLAS/LAPACK by yourself. See Troubleshooting of the Installation Process.
For the installation of SALMON, we adopt the CMake tools as the first option. If there were any problems to use CMake tools in your environment, you may use the GNU make tools. See Troubleshooting of the Installation Process.
Download
The newest version of SALMON can be downloaded from Download. To extract files from the downloaded file salmon-<VERSION>.tar.gz, type the following command in the command-line,
$ tar –zxvf ./salmon-<VERSION>.tar.gz
After the extraction, the following directories will be created.
SALMON |- src Source codes |- example Samples |- makefiles GNU Makefiles for building |- cmakefiles CMake related files |- makefiles GNU Makefiles for building
Build
To compile SALMON to create executable the binary files, we adopt to use CMake tools as the first option. In case you fail to build SALMON using CMake in your environment, we may use Gnu Make. See Install_and_Run-v.1.0.0#Build_with_GNU_Makefile.
Checking CMake availability
First, examine whether CMake is usable in your environment or not. Type the following in Unix command-line:
$ cmake --version
If CMake is not installed in your system, an error message such as cmake: command not found
will appear.
If CMake is installed on your system, the version number will be shown.
To build SALMON, CMake of version 3.0.2 or later is required.
If you confirm that Came of version 3.0.2 or later is installed in your system, proceed to #Build using CMake.
However, we realize that old versions of CMake are installed in many systems.
If CMake is not installed or CMake of older versions is installed in your system, you need to install the new version by yourself.
It is a simple procedure and explained below.
Installation of CMake
CMake is a cross-platform build tool.
The simplest way to make CMake usable in your environment is to get the binary distribution of CMake from the download page.
We assume that you are in the directory that you extracted files from the downloaded file of SALMON.
Download the binary distribution ( cmake-<VERSION>-<PLATFORM>.tar.gz
) appropriate for your platform.
To do it, first get the URL of the download link from your browser. and use wget
command in your Unix command-line.
We assume that you will use the version 3.8.2.
wget https://cmake.org/files/v3.8/cmake-3.8.2-Linux-x86_64.tar.gz
Next, unpack the archive by
tar -zxvf cmake-3.8.2-Linux-x86_64.tar.gz
and you will have the binary make-3.8.2-Linux-x86_64/bin/cmake
in your directory.
To make the cmake
command usable in your command-line, you need to modify the environment variable $PATH
so that the executable of CMake are settled inside the directory specified in your $PATH
.
If you use the bash shell, you edit ~/.bashrc
and append the line:
export PATH=<SALMON_INSTALLATION_DIRECTORY>/cmake-3.8.2-Linux-x86_64/bin:$PATH
, and reload the configuration source ~/.bashrc
.
Build using CMake
The installation of the CMake is simple. A detailed description of the installation is given in Installation of CMake. Here we describe a simple method to use the binary distribution of CMake. First, download the binary distribution file appropriate for your system from https://cmake.org/download/. The filename of the downloaded file will be cmake-<VERSION_PLATFORM>.tar.gz. In standard Unix environment, files for the platform of Linux x86_64 will be appropriate. Next extract the binary executable file of CMake, typing in the command-line as
$ tar xvfz cmake-<VERSION_PLATFORM>.tar.gz
Then you will have the cmake binary file in bin directory. For the CMake binary file to be usable, you need to modify the Unix environmental variable $PATH appropriately.
Description how to modify the $PATH should come here
To confirm that CMake of the new version is usable in your environment, type cmake --version
in the command-line.
Build using CMake specifying archtechture
Confirming that CMake of version 3.0.2 or later can be usable on your system, proceed the following steps. We assume that you are in the directory SALMON.
- Create a new temporary directory build and move to the directory,
$ mkdir build $ cd build
- Execute the python script configure.py and then make,
$ python ../configure.py –arch=ARCHTECTURE $ make
Here ARCHITECTURE specifies the architecture of the CPU in your computer system such as intel-avx. You need to choose ARCHTECUTRE from the following options:
arch | Detail | Compiler | Numerical Library |
intel-knl | Intel Knights Landing | Intel Compiler | Intel MKL |
intel-knc | Intel Knights Corner | Intel Compiler | Intel MKL |
intel-avx | Intel Processer (Ivy-, Sandy-Bridge) | Intel Compiler | Intel MKL |
intel-avx2 | Intel Processer (Haswell, Broadwell ..) | Intel Compiler | Intel MKL |
fujitsu-fx100 | FX100 Supercomputer | Fujitsu Compiler | SSL-II |
fujitsu-k | Fujitsu FX100 / K-computer | Fujitsu Compiler | SSL-II |
If the build is successful, you will get a file salmon.cpu at the directory salmon/bin. If you specify many-core archtechtures, intel-knl or intel-knc, you find a file salmon.mic or both files salmon.cpu and salmon.mic.
Files necessary to run SALMON
To run SALMON, at least two kinds of files are required for any calculations. One is an input file, with the filename extension of *.inp*, to be read from the standard input, stdin. It should be prepared in the Fortran90 namelist format. Pseudopotential files of relevant elements are also required. Depending on your purpose, some other files may also be necessary. For example, coordinates of atomic positions of the target material may either be written in the input file or prepared as a separate file.
Pseudopotentials
SALMON utilizes norm-conserving pseudpotentials. You may find pseudopotentials of some elements in Samples. SALMON allows using several formats of pseudopotentials that can be easily obtained from websites listed below.
pseudopotential | website |
Ab-init FHI | http://www.ab-init |
In the input file, you need to write the filename of the pseudopotential. Use exactly the same filename as that downloaded from the website or that in the Samples.
input file
SALMON describes electron dynamics in systems with both isolated and periodic boundary conditions. The boundary condition is specified by the variable iperiodic in the namelist &system. Calculations are achieved in two steps; first, the ground state calculation is carried out and then electron dynamics calculations in real time are achieved. Choice of the calculation mode is specified by the variable calc_mode in the namelist &calculation. For isolated systems, the ground state and the electron dynamics calculations should be carried out in two steps. First the ground state calculation is achieved specifying calc_mode = 'GS' . Then the real-time electron dynamics calculation is achieved specifying calc_mode = 'RT' . For periodic systems, two calculations can also be carried out in one step specifying calc_mode = 'GS_RT' . For the isolated systems, ’GS-RT’ is not implemented. However, their calculations are done at once if users prepare appropriate shell scripts.
There are about 20 groups of main namelists listed below. A list of variables in each namelist is provided in the file ??? included in the source-file distribution.
name of namelist | description |
&calculation | specify calculation modes |
&control | parameters related to general conditions for the calculation |
&units | specify units of input and output files |
¶llel | parameters related to parallelization |
&system | information related to the system |
&pseudo | information related to pseudopotentials |
&functional | specify density functional to be used |
&rgrid | parameters related to real space grid |
&kgird | parameters related to k-points for periodic systems |
&tgrid | parameters related to time evolution |
&propagation | specify a choice of the propagation method |
&scf | parameters related to ground state calculation |
&emfield | parameters of electric fields applied to the system |
&linear_response | magnitude of the distortion for linear response |
&multiscale | parameters related to coupled multiscale calculations of electron dynamics and light propagations |
&analysis | parameters related to output files |
&hartree | parameters related to Hartree potential calculation of isolated systems |
&ewald | parameters related to Ewald sum that appears in the ground state calculation of periodic systems |
&atomic_coor | Atomic coordinates can be written here |
In Samples, we prepare six samples that cover typical calculations feasible by using SALMON. We prepare explanations for the input files that will help to prepare input files of your own interests.
Here we briefly explain the format of the namelist.
&namelist1 variable1 = int_value variable2 = 'char_value' / &namelist2 variable1 = real8_value variable2 = int_value1, int_value2, int_value3 /
A block of namelists starts with &namelist line and ends with / line. Between two lines, descriptions of variables and their values appear. Note that many variables have their default values so that it is not necessary to give values for all variables. The description of the variables may appear at any position if they are between &namelist and /. Input files constitute of several blocks of namelists. The blocks can appear in any order.
Run SALMON
To run SALMON, the executable file of salmon.cpu (and salmon.mic if your system is the many-core machine) should be built from the source file of SALMON as described above. An input file inputfile.inp and pseudopotential files should also be prepared as mentioned above. In order to execute the calculation, for the single process environment, type the following command:
$ salmon.cpu < inputfile.inp > fileout.out
For the multiprocess environment, If the command to execute calculations using MPI is mpiexec', the calculation will start
$ mpiexec -n NPROC salmon.cpu < inputfile.inp > fileout.out
where NPROC is the number of MPI processes you want to use. For the many-core processor (e.g. intel-knl) environment, the execution command is
$ mpiexec.hydra -n NPROC salmon.mic < inputfile.inp > fileout.out
The execution command and the job submission procedure depends much on the local environment. We just summarize the general conditions to execute SALMON:
- salmon runs in parallel environment using MPI.
- executable files are prepared as /salmon/bin/salmon.cpu and/or /salmon/bin/salmon.mic in the standard build procedure.
- to start calculations, inputfile.inp should be read through stdin.
Appendix
Additional options in configure.py script
In executing configure.py
, you may manually specify compiler and environment variables instead of specifying the architecture, for example:
$ python ../configure.py FC=mpiifort CC=mpiicc FFLAGS="-xAVX" CFLAGS="-restrict -xAVX"
The major options of configure.py
is expressed as table below:
Commandline switch | Detail |
-a ARCH, --arch=ARCH | Target architecture |
--enable-mpi, --disable-mpi | enable/disable MPI parallelization. |
---enable-scalapack, --disable-scalapack | enable/disable computations with ScaLAPACK library |
FC, FFLAGS | User-defined Fortran Compiler, and the compiler options |
CC, CFLAGS | User-defined C Compiler, and the compiler options |
Build for Single processor environment
If you want to build for the single process environment, please specify --disable-mpi
.
$ python ../configure.py --arch=<ARCHITECTURE> --disable-mpi
Build for the GCC/GFortran environemnt
If you want to build by using GCC/GFortran compiler, you specify:
$ python ../configure.py FC=gfortran CC=gcc FFLAG=-O3 CFLAG=-O3
Build by GNU Makefile
If CMake build fails in your environment, you can try Gnu Make for the build process.
First, enter to the makefile directory:
$ cd SALMON/makefiles
and you need to choose Makefile appropriately according to your environment. The available makefiles are
- fujitsu
- gnu
- gnu-without-mpi
- intel
- intel-avx
- intel-avx2
- intel-knc
- intel-knl
- intel-without-mpi
The -without-mpi
specifies the build for the single process environment.
Execute make command with the platform specified makefile:
$ make -f Makefile.PLATFORM
The binary file is created in the directory SALMON/bin/
.