Difference between revisions of "Explanations for C2H2 gs input files"
Line 86: | Line 86: | ||
/ | / | ||
− | + | <code>nscf = 1000</code> specifies the number of SCF iterations. | |
== &hartree(Mandatory: none) == | == &hartree(Mandatory: none) == | ||
Line 95: | Line 95: | ||
/ | / | ||
− | meo = 3 specifies the order of multipole expansion of electron density that is used to prepare boundary condition for the Hartree potential. | + | <code>meo = 3</code> specifies the order of multipole expansion of electron density that is used to prepare boundary condition for the Hartree potential. |
== &group_fundamental(Mandatory: ?) == | == &group_fundamental(Mandatory: ?) == | ||
Line 112: | Line 112: | ||
/ | / | ||
− | The file C2H2.data specified in file_OUT='C2H2.data' will be used as input in the | + | The file ''C2H2.data'' specified in <code>file_OUT='C2H2.data'</code> will be used as input in the real time calculation. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 12:45, 11 June 2017
Contents
- 1 &unit(Mandatory: none)
- 2 &calculation(Mandatory: calc_mode)
- 3 ¶llel(Mandatory: none?)
- 4 &system(Mandatory: iperiodic, al, nstate, nelem, natom)
- 5 &pseudo(Mandatory: pseudo_file, iZatom)
- 6 &rgrid(Mandatory: {dl,num_rgrid})
- 7 &scf(Mandatory: nscf)
- 8 &hartree(Mandatory: none)
- 9 &group_fundamental(Mandatory: ?)
- 10 &group_file(Mandatory: file_OUT)
&unit(Mandatory: none)
&units unit_length='Angstrom' unit_energy='eV' unit_time='fs' /
This namelist specifies the unit system used in the input and the output files. If you do not specify the units for some physical quantities, atomic unit will be used for those quantities.
&calculation(Mandatory: calc_mode)
&calculation calc_mode = 'GS' /
The variable calc_mode
should be one of 'GS'
, 'RT'
, and 'GS-RT'
.
Note that the ground state ('GS'
) and real time ('RT'
) calculations should be done separately and sequentially for isolated systems (specified by iperiodic = 0
in &system
).
For periodic systems (specified by iperiodic = 3
in &system
), both ground state and real time calculations should be carried out as a single task (calc_mode = 'GS_RT'
).
¶llel(Mandatory: none?)
¶llel domain_parallel = 'y' nproc_ob = 1 nproc_domain = 3,4,1 nproc_domain_s = 3,4,1 /
domain_parallel = 'y'
indicates that the spatial grid is divided and parallely executed.
nproc_ob = 1
indicates the number of MPI parallelization for orbitals.
nproc_domain = 3,4,1
indicates the spatial division for orbitals in x,y,z directions.
nproc_domain_s = 3,4,1
indicates the spatial divisions for Hartree potential in x,y,z directions.
&system(Mandatory: iperiodic, al, nstate, nelem, natom)
&system iperiodic = 0 al = 16d0, 16d0, 16d0 nstate = 5 nelem = 2 natom = 4 file_atom='coo.data' /
iperiodic = 0
indicates that isolated boundary condition is assumed.
al = 16d0, 16d0, 16d0
specifies the lengths of three sides of a rectangular parallelepiped where the grid points are prepared.
nstate = 5
indicates the number of Kohn-Sham orbitals to be solved.
nelem = 2
and natom = 4
indicate the number of elements and the number of atoms in the system, respectively. `
file_atom='coo.dat'
indicates that the atomic positions of the molecule is provided by the file coo.dat
.
The atomic positions may be specified in the &atomic_positions
of the input file.
&pseudo(Mandatory: pseudo_file, iZatom)
&pseudo iZatom(1)=6 iZatom(2)=1 ps_format(1)='KY' ps_format(2)='KY' Lmax_ps(1)=1 Lmax_ps(2)=0 Lloc_ps(1)=1 Lloc_ps(2)=0 /
Information on pseudopotentials. pseudo_file(1) = 'file_pseudo.dat'
indicates the filename of the pseudopotential of element 1.
Lmax_ps(1) = 1
and Lloc_ps(1) = 1
indicate the maximum angular momentum of the pseudopotential projector and the angular momentum of the pseudopotential that will be treated as local, respectively.
iZatom(1) = 6
indicates the atomic number of the element 1.
&rgrid(Mandatory: {dl,num_rgrid})
&rgrid dl = 0.25d0, 0.25d0, 0.25d0 /
dl = 0.25d0, 0.25d0, 0.25d0
specifies grid spacing in three Cartesian directions.
The grid spacing can also be specified by num_rgrid that specifies the number of grid points.
&scf(Mandatory: nscf)
&scf rmixrate = 0.1d0 ncg = 4 nscf = 1000 /
nscf = 1000
specifies the number of SCF iterations.
&hartree(Mandatory: none)
&hartree meo = 3 num_pole_xyz = 2,2,2 /
meo = 3
specifies the order of multipole expansion of electron density that is used to prepare boundary condition for the Hartree potential.
&group_fundamental(Mandatory: ?)
&group_fundamental MST(1)=5 ifMST(1)=5 /
&group_file(Mandatory: file_OUT)
&group_file file_OUT='C2H2.data' LDA_Info='C2H2.info' /
The file C2H2.data specified in file_OUT='C2H2.data'
will be used as input in the real time calculation.