Explanations of input files (ground state of C2H2 molecule)

From salmon
Revision as of 14:46, 23 November 2017 by Yabana (talk | contribs) (Created page with "== required and recommened variables == === &units === Mandatory: none &units unit_system='A_eV_fs' / This namelist specifies the unit system to be used in the input...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

required and recommened variables

&units

Mandatory: none

&units
  unit_system='A_eV_fs'
/

This namelist specifies the unit system to be used in the input file. If you do not specify it, atomic unit will be used. See Tutorial-v.1.0.0#&units for detail.

For isolated systems (specified by iperiodic = 0 in &system), the unit of 1/eV is used for the output files of DOS and PDOS if unit_system = 'A_eV_fs' is specified, while atomic unit is used if not. For other output files, the Angstrom/eV/fs units are used irrespective of the namelist value.

&calculation

Mandatory: calc_mode

&calculation
  calc_mode = 'GS'
/

This indicates that the ground state (GS) calculation is carried out in the present job. See Tutorial-v.1.0.0#&calculation for detail.

&control

Mandatory: none

&control
  sysname = 'C2H2'
/

'C2H2' defined by sysname = 'C2H2' will be used in the filenames of output files.

&system

Mandatory: iperiodic, al, nstate, nelem, natom

&system
  iperiodic = 0
  al = 16d0, 16d0, 16d0
  nstate = 5
  nelem = 2
  natom = 4
  nelec = 10
/

iperiodic = 0 indicates that the isolated boundary condition will be used in the calculation. al = 16d0, 16d0, 16d0 specifies the lengths of three sides of the rectangular parallelepiped where the grid points are prepared. nstate = 8 indicates the number of Kohn-Sham orbitals to be solved. nelec = 10 indicate the number of valence electrons in the system. Since the present code assumes that the system is spin saturated, nstate should be equal to or larger than nelec/2. nelem = 2 and natom = 4 indicate the number of elements and the number of atoms in the system, respectively. See Tutorial-v.1.0.0#&system for more information.

&pseudo

Mandatory: pseudo_file, izatom

&pseudo
  izatom(1)=6
  izatom(2)=1
  pseudo_file(1)='C_rps.dat'
  pseudo_file(2)='H_rps.dat'
  lmax_ps(1)=1
  lmax_ps(2)=0
  lloc_ps(1)=1
  lloc_ps(2)=0
/

Parameters related to atomic species and pseudopotentials. izatom(1) = 6 specifies the atomic number of the element #1. pseudo_file(1) = 'C_rps.dat' indicates the filename of the pseudopotential of element #1. lmax_ps(1) = 1 and lloc_ps(1) = 1 specify the maximum angular momentum of the pseudopotential projector and the angular momentum of the pseudopotential that will be treated as local, respectively.

&rgrid

Mandatory: dl or num_rgrid

&rgrid
  dl = 0.25d0, 0.25d0, 0.25d0
/

dl = 0.25d0, 0.25d0, 0.25d0 specifies the grid spacings in three Cartesian directions. See Tutorial-v.1.0.0#&rgrid for more information.

&scf

Mandatory: nscf

&scf
  ncg = 4
  nscf = 1000
  convergence = 'norm_rho_dng'
  threshold_norm_rho = 1.d-15
/

ncg is the number of CG iterations in solving the Khon-Sham equation. nscf is the number of scf iterations. For isolated systems specified by &system/iperiodic = 0, the scf loop in the ground state calculation ends before the number of the scf iterations reaches nscf, if a convergence criterion is satisfied. There are several options for the convergence check. If the value of norm_rho_dng is specified, the convergence is examined by the squared difference of the electron density,

&atomic_coor

Mandatory: atomic_coor or atomic_red_coor (it may be provided as a separate file)

&atomic_coor
'C'    0.000000    0.000000    0.599672  1
'H'    0.000000    0.000000    1.662257  2
'C'    0.000000    0.000000   -0.599672  1
'H'    0.000000    0.000000   -1.662257  2
/

Cartesian coordinates of atoms. The first column indicates the element. Next three columns specify Cartesian coordinates of the atoms. The number in the last column labels the element.